Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ 2D Mater Appl ; 7(1): 11, 2023.
Article in English | MEDLINE | ID: mdl-38665480

ABSTRACT

Nanopores in two-dimensional (2D) membranes hold immense potential in single-molecule sensing, osmotic power generation, and information storage. Recent advances in 2D nanopores, especially on single-layer MoS2, focus on the scalable growth and manufacturing of nanopore devices. However, there still remains a bottleneck in controlling the nanopore stability in atomically thin membranes. Here, we evaluate the major factors responsible for the instability of the monolayer MoS2 nanopores. We identify chemical oxidation and delamination of monolayers from their underlying substrates as the major reasons for the instability of MoS2 nanopores. Surface modification of the substrate and reducing the oxygen from the measurement solution improves nanopore stability and dramatically increases their shelf-life. Understanding nanopore growth and stability can provide insights into controlling the pore size, shape and can enable long-term measurements with a high signal-to-noise ratio and engineering durable nanopore devices.

2.
RSC Adv ; 11(41): 25561-25574, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-35478865

ABSTRACT

Nanofluids are gaining attention as an attractive solution for the sustainable machining of difficult-to-cut materials. Despite the enormous recent work in the literature, there are still contradictions concerning the effect of different preparation factors on the characteristics of nanofluids and the underlying mechanisms governing them. In the present study, the effect of varying the preparation factors, namely, multi-walled carbon nanotube (MWCNT) concentration, sonication time, and surfactant amount on various nanofluid characteristics and the interactions among these characteristics were studied. The characteristics are divided into two categories: (a) dispersion/stability and (b) viscosity/wettability. The analysis showed strong interactions between these two categories which were mainly attributed to aggregates' formation and dynamics. For the stability/dispersion responses, the effect of aggregation and saturation phenomena is discussed in relation to the different preparation factors. Our analysis shows that the nanofluid viscosity is strongly dependent on aggregate morphology. As for wettability, a novel mechanism is proposed and used to explain the nanoparticles' influence on wettability based on the nanolayering theory. Finally, multi objective optimization (MOO) based on grey relational analysis (GRA) was performed. It was found that moderate MWCNT concentration, high sonication time, and low surfactant amount show the optimal characteristics within the current study design variables search domain. The novelty in the present study lies in its consideration of the simultaneous interaction between the nanofluids' properties and stability. Unlike the common practice in the literature, which focuses on one or two aspects of nanofluids, our approach broadens the analysis and provides in-depth insights into the nanofluid as a complete physical system.

SELECTION OF CITATIONS
SEARCH DETAIL
...