Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815705

ABSTRACT

Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.

2.
J Biomed Sci ; 31(1): 40, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637839

ABSTRACT

Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.


Subject(s)
Anti-Infective Agents , Sepsis , Humans , Drug Delivery Systems , Peptides/therapeutic use , Nanotechnology , Sepsis/diagnosis , Sepsis/drug therapy
3.
J Control Release ; 351: 598-622, 2022 11.
Article in English | MEDLINE | ID: mdl-36183972

ABSTRACT

Hybrid nanoparticles (NPs) are emerging as superior alternatives to conventional nanocarriers for enhancing the delivery of antibiotics and improving their targeting at the infection site, resulting in the eradication of bacterial infections and overcoming antimicrobial resistance. They can specifically control the release of antibiotics when reaching the targeted site of infection, thus enhancing and prolonging their antimicrobial efficacy. In this review, we provide a comprehensive and an up-to-date overview of the recent advances and contributions of lipid-polymer hybrid NPs; organic-inorganic hybrid NPs; metal-organic frameworks; cell membrane-coated hybrid NPs; hybrid NP-hydrogels; and various others, that have been reported in the literature for antibacterial delivery, with emphasis on their design approaches; the nanomaterials constructed; the mechanisms of drug release; and the enhanced antibacterial efficacy of the reported hybrid nanocarriers. This review also highlights future strategies that can be used to improve the potential of hybrid nanosystems to treat bacterial infections and overcome antibiotic resistance.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Nanoparticles , Humans , Bacterial Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Drug Liberation , Polymers/therapeutic use , Drug Delivery Systems/methods
4.
Pan Afr Med J ; 41: 203, 2022.
Article in English | MEDLINE | ID: mdl-35685098

ABSTRACT

Successful and sustainable implementation of Competency-based Medical Education (CBME) programs is a significant and daunting challenge facing medical education worldwide. Our manuscript endorses for the first time, Systems Thinking as a concept for transforming and redesigning CBME programs employing the full 7-system elements as advocated by the Biomatrix Systems Theory. The majority of internationally recommended actions and processes for such an endeavor are highlighted, each within its system element. New innovative ideas such as having competency-structured clinical training activities as well as re-writing medical textbooks following a novel competency-based roadmap for their disease monographs etc. are also highlighted. Furthermore, the need for innovative partnerships as well as novel medical rotations that may facilitate the creation of "master clinicians" are also stressed.


Subject(s)
Competency-Based Education , Education, Medical , Clinical Competence , Humans , Systems Analysis
5.
Article in English | MEDLINE | ID: mdl-35485247

ABSTRACT

Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA-based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA. These nanoparticles are able to selectively deliver antibacterial drugs or diagnostic molecules into the site of infections. In addition, HA can bind with overexpressed cluster of differentiation 44 (CD44) receptors in macrophages and also can be degraded by a family of enzymes called hyaluronidase (HAase) to release drugs or molecules. By binding with these receptors or being degraded at the infection site by HAase, HA-based nanoparticles allow enhanced and targeted antibacterial delivery. Herein, we present a comprehensive and up-to-date review that highlights various techniques of preparation of HA-based nanoparticles that have been reported in the literature. Furthermore, we also discuss and critically analyze numerous types of HA-based nanoparticles that have been employed in antibacterial delivery to date. This article offers a critical overview of the potential of HA-based nanoparticles to overcome the challenges of conventional antibiotics in the treatment of bacterial infections. Moreover, this review identifies further avenues of research for developing multifunctional and biomimetic HA-based nanoparticles for the treatment, prevention, and/or detection of pathogenic bacteria. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Bacterial Infections , Nanoparticles , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Drug Delivery Systems/methods , Humans , Hyaluronic Acid/chemistry , Nanomedicine , Nanoparticles/chemistry , Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...