Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol Rep ; 12: 91-99, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229920

ABSTRACT

Autism spectrum disorder, or individual disability (ID), is a condition characterized by complications in social interaction, restricted repetitive behavior, and difficulties in social communication. Neuquinon (NQ) possess a powerful therapeutic potential in various neurodegenerative disease. Nevertheless, contributing to NQ's low water solubility and bioavailability, its medicinal use has been constrained. Liposomes were supposed to be prospective drug-delivering agents for NQ, crossing the blood-brain barrier (BBB), and reaching the target organs. The current investigation aims to track the signaling pathways that govern NQ and liposomal neuquinon (LNQ) action in autistic models generated by ethyl formic acid. The neurotransmitters gamma amino-butyric acid (GABA), acetylcholine (ACh), and acetylcholinesterase (AChE) in addition to, the gene expressions of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and methyl-CpG-binding protein 2 (MeCP2) and the DNA damage COMET analysis at different time intervals of the study, were assessed. EFA in a dose of 500 mg/kg BW was used to induce autism in rats, and then NQ and LNQ were administered in 10 mg/kg and 2 mg/kg BW, respectively. The results revealed that NQ and LNQ significantly down-regulated BDNF, GABA, and AChE; on the other hand, they up-regulated MeCP2, CREB gene expressions, and ACh action. NQ and LNQ displayed improvement in DNA damage in almost all brain regions after EFA alterations; even better results were noticed post-LNQ therapy. Therefore, it may be concluded that neuquinon and liposomal-loaded neuquinon have a therapeutic index versus EFA-induced autism in a rat model.

2.
Toxicol Rep ; 10: 17-26, 2023.
Article in English | MEDLINE | ID: mdl-36561125

ABSTRACT

Autism spectrum disorder (ASD) is an extreme neuropsychotic disturbance with both environmental and genetic origins. Sodium propionate (PPA) a metabolic bioproduct of gut microbiota is well-thought-out as a successful autism animal model. Nevertheless, Liposomal drug delivery system possess the advantagous of biocompatibility, targeting organs, ability to carry large drug payloads and skipping macrophages for this purpose the current study was carried out to investigate the hypothesis that Calcium Voltage-Gated channel subunit alpha 1 C (CACNA1C) and glial fibrillary acidic protein (GFAP) signaling pathways crosstalk with the efficacy of Co-enzyme Q10 (Co-Q10) and liposomal loaded Co-enzyme Q10 (L Co-Q10) in PPA mediated autistic rat model. Autism was conducted by buffered PPA (500 mg/Kg b.wt) daily for 5 consecutive days subsequently treatment via Co-Q10 in a dose of (10 mg/kg b.wt) and L Co-Q10 (2 mg/kg b.wt) for four weeks then the autistic model was followed for signs of autism at different time intervals of (one, two and four weeks). The control, PPA intoxicated, and treated groups were subjected to behavioral tests (Y-Maze and open field), antioxidant analysis, gene expression analysis, and histological examination at different time intervals of the study. The results revealed that Co-Q10 and L Co-Q10 significantly elevated antioxidative stress biomarkers, comprising superoxide dismutase (SOD), glutathione (GSH), and total antioxidant capacity (TAC). In addition, they significantly ameliorated the oxidative stress biomarker malondialdehyde (MDA). Meanwhile, they significantly downregulated GFAP and CACNA1C mRNA gene expressions, Co-Q10 and LCo-Q10 showed improvement in almost brain regions post PPA histopathological alterations, even better results were manifested via LCo-Q10 groups. These results showed the superiority of LCo-Q10 over Co-Q10 in competing autism. In conclusion: The administration of anti-inflammatory and antioxidant agents such as Co-Q10 and L Co-Q10 may represent a promising strategy to counteract pathological behaviors in ASD model via targeting organs, increasing retention time, and reducing side effects.

SELECTION OF CITATIONS
SEARCH DETAIL