Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37540613

ABSTRACT

Computer vision methods for depth estimation usually use simple camera models with idealized optics. For modern machine learning approaches, this creates an issue when attempting to train deep networks with simulated data, especially for focus-sensitive tasks like Depth-from-Focus. In this work, we investigate the domain gap caused by off-axis aberrations that will affect the decision of the best-focused frame in a focal stack. We then explore bridging this domain gap through aberration-aware training (AAT). Our approach involves a lightweight network that models lens aberrations at different positions and focus distances, which is then integrated into the conventional network training pipeline. We evaluate the generality of network models on both synthetic and real-world data. The experimental results demonstrate that the proposed AAT scheme can improve depth estimation accuracy without fine-tuning the model for different datasets. The code will be available in github.com/vccimaging/Aberration-Aware-Depth-from-Focus.

2.
IEEE Trans Pattern Anal Mach Intell ; 39(12): 2539-2553, 2017 12.
Article in English | MEDLINE | ID: mdl-28055848

ABSTRACT

People typically learn through exposure to visual concepts associated with linguistic descriptions. For instance, teaching visual object categories to children is often accompanied by descriptions in text or speech. In a machine learning context, these observations motivates us to ask whether this learning process could be computationally modeled to learn visual classifiers. More specifically, the main question of this work is how to utilize purely textual description of visual classes with no training images, to learn explicit visual classifiers for them. We propose and investigate two baseline formulations, based on regression and domain transfer, that predict a linear classifier. Then, we propose a new constrained optimization formulation that combines a regression function and a knowledge transfer function with additional constraints to predict the parameters of a linear classifier. We also propose a generic kernelized models where a kernel classifier is predicted in the form defined by the representer theorem. The kernelized models allow defining and utilizing any two Reproducing Kernel Hilbert Space (RKHS) kernel functions in the visual space and text space, respectively. We finally propose a kernel function between unstructured text descriptions that builds on distributional semantics, which shows an advantage in our setting and could be useful for other applications. We applied all the studied models to predict visual classifiers on two fine-grained and challenging categorization datasets (CU Birds and Flower Datasets), and the results indicate successful predictions of our final model over several baselines that we designed.

SELECTION OF CITATIONS
SEARCH DETAIL
...