Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomol Biomed ; 24(3): 545-559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38340316

ABSTRACT

The enzyme glutamate-cysteine ligase modifier subunit (GCLM) serves as the initial rate-limiting factor in glutathione (GSH) synthesis. GSH is the preferred substrate for glutathione peroxidase 4 (GPX4), directly impacting its activity and stability. This study aims to elucidate the expression of GCLM and its correlation with the nuclear factor erythroid 2-related factor 2 (NFE2L2), commonly referred to as NRF2, in esophageal squamous cell carcinoma (ESCC) and further investigate the potential signaling axis of radiotherapy resistance caused by NRF2-mediated regulation of ferroptosis in ESCC. The expression of NRF2, GCLM, and GPX4 in ESCC was analyzed by bioinformatics, and their relationship with ferroptosis was verified through cell function experiments. Their role in radioresistance was then investigated through multiple validation steps. Bioinformatics analysis was employed to determine the immune infiltration pattern of NRF2 in ESCC. Furthermore, the effect of NRF2-mediated massive macrophage M2 infiltration on radiotherapy and ferroptosis was validated through in vivo experiments. In vitro assays demonstrated that overactivated NRF2 promotes radioresistance by directly binding to the promoter region of GCLM. The Tumor Immune Estimation Resource (TIMER) and quanTIseq analyses revealed NRF2 enrichment in M2 macrophages with a positive correlation. Co-culturing KYSE450 cells with M2 macrophages demonstrated that a significant infiltration of macrophages M2 can render ESCC cells resistant to radiotherapy but restore their sensitivity to ferroptosis in the process. Our study elucidates a link between the NRF2-GCLM-GSH-GPX4 signaling axis in ESCC, highlighting its potential as a therapeutic target for antagonistic biomarkers of resistance in the future. Additionally, it provides a novel treatment avenue for ESCC metastasis and radioresistance.


Subject(s)
Glutamate-Cysteine Ligase , NF-E2-Related Factor 2 , Radiation Tolerance , Animals , Humans , Male , Mice , Cell Line, Tumor , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/radiotherapy , Ferroptosis , Gene Expression Regulation, Neoplastic , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Mice, Inbred BALB C , Mice, Nude , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Radiation Tolerance/genetics
2.
Biochem Biophys Res Commun ; 703: 149687, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38368674

ABSTRACT

BACKGROUND: ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS: Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS: ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION: ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Apoptosis/genetics , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/drug therapy , Radiation Tolerance/genetics , Tumor Suppressor Protein p53
3.
Oncol Lett ; 15(4): 5703-5711, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29552204

ABSTRACT

Progestin and adipoQ receptor family member 3 (PAQR3) is a novel tumor suppressor; however, its function in esophageal cancer is not well understood. The present study explored the association between PAQR3, and the survival and clinical phenotype in patients with esophageal squamous cell carcinoma (ESCC). The expression of PAQR3 in 80 cases of ESCC and its corresponding adjacent tissues was detected by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that PAQR3 expression in cancer tissues was significantly lower compared with that in adjacent tissues. Clinicopathological analysis indicated that PAQR3 expression was significantly correlated with ethnicity (P=0.032), tumor length (P=0.019), lymph node metastasis (P=0.011) and local recurrence (P=0.009). Notably, the Kaplan-Meier survival curve demonstrated that a decrease in PAQR3 expression was associated with poor prognosis in patients with ESCC. Multivariate analysis indicated that PAQR3 expression was an independent prognostic indicator for patients with ESCC. PAQR3 may serve an important role in the progress of ESCC and become a potential candidate for ESCC targeted therapy.

4.
Biomed Pharmacother ; 94: 813-819, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28802234

ABSTRACT

Progestin and adipoQ receptor family member 3 (PAQR3) has exhibited anticancer activity in multiple malignancies. However, its expression and function in esophageal squamous cell carcinoma (ESCC) is still elusive. In this work, we examined the expression of PAQR3 in 40 surgically resected ESCC specimens and their adjacent normal tissues. The expression of PAQR3 in ESCC cell lines was measured after treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR). The effects of overexpression of PAQR3 on cell proliferation, colony formation, invasion, and tumorigenesis were investigated. It was found that the PAQR3 mRNA level was significantly lower in ESCC than that in adjacent normal tissues (P=0.0318). Low PAQR3 expression was significantly associated with more advanced TNM stage (P=0.0093) and absent lymph node involvement (P=0.0324). Compared to normal esophageal epithelial cells, ESCC cells had significantly lower levels of PAQR3. 5-Aza-CdR treatment led to an induction of PAQR3 in ESCC cells. Enforced expression of PAQR3 significantly inhibited ESCC cell proliferation, colony formation and invasion. Moreover, PAQR3 overexpression blocked cell cycle transition from G1 to S phase, which was associated with induction of p27 and p21 and reduction of cyclin D1, CDK4, and CDK2. Mechanistically, overexpression of PAQR3 suppressed the phosphorylation of ERK1/2 in ESCC cells. In vivo tumorigenic studies confirmed that PAQR3 overexpression retarded the growth of ECA-109 xenograft tumors and inhibited the activation of ERK signaling. Taken together, PAQR3 is epigenetically silenced in ESCC and restoration of PAQR3 suppresses the aggressive phenotype of ESCC cells. Therefore, PAQR3 may represent a potential target for the treatment of ESCC.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/analogs & derivatives , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Animals , Azacitidine/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Decitabine , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Male , Mice , Mice, Nude , Middle Aged , Neoplasm Staging , Phenotype , RNA, Messenger/metabolism , Signal Transduction/genetics
5.
Int J Clin Exp Med ; 8(6): 10168-77, 2015.
Article in English | MEDLINE | ID: mdl-26309716

ABSTRACT

To investigate the K-ras genetic mutation status in colorectal cancer patients, compare the difference of K-ras genetic mutation rate in Han and Uygur nationality and analyze the influencing factor. 91 cases (52 cases of Han nationality and 39 cases of Uygur nationality) of colorectal biopsy or surgical ablation pathology specimen from the first affiliated hospital of Xinjiang Medical University during January, 2010 to March, 2013 were collected to detect the 12th and 13th code mutation status of K-ras gene exon 2 with pyrosequencing method and compare the difference of K-ras gene mutation rate between Han and Uygur nationality patients. Single factor analysis and multiple factor logistic regression analysis were utilized to analyze the influencing factor for K-ras genetic mutation. 33 cases of patients with K-ras genetic mutation were found from the 91 cases colorectal cancer patients and the total mutation rate was 36.3%. Among them, 24 cases (72.7%) were found with mutation only in the 12th code, 9 cases (27.3%) were found with mutation only in the 13th code and no one case was found with mutation in both the two codes. Mutation rate of the 12th code in the Uygur nationality was significantly higher than that in the Han nationality (P<0.05), but there were no significant difference in the comparison of the total mutation rate and the 13th code mutation rate between the two groups (P>0.05). There were no associativity (P>0.05) between the K-ras genetic mutation and sex, age, smoking history, drinking history, tumor location, macropathology type, differentiation level, staging, invasive depth, lymph nodes transferring and metastasis in colorectal cancer patients (P>0.05). K-ras genetic mutation rate is high in colorectal cancer patients. The mutation rate of 12th code in Uygur nationality is higher than that in Han nationality. There is no significant associativity between K-ras genetic mutation rate and patients' clinical pathology characteristic.

SELECTION OF CITATIONS
SEARCH DETAIL
...