Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocrinol ; 186(2): 291-301, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16079255

ABSTRACT

We have previously reported that bradykinin (BK) represents an influential mitogenic agent in normal breast glandular tissue. We here investigated the mitogenic effects and the signalling pathways of BK in primary cultured human epithelial breast cells obtained from a tumour and from the histologically proven non-malignant tissue adjacent to the tumour. BK provoked cell proliferation, increase in cytosolic calcium, activation of protein kinase C (PKC)-alpha, -beta, -delta, -epsilon and -eta and phosphorylation of the extracellular-regulated kinases 1 and 2 (ERK1/2). The following compounds blocked the proliferative effects of BK: Hyp3-BK, a B2 receptor subtype inhibitor; U73122, a phospholipase C-beta inhibitor; GF109203X, a protein kinase C (PKC) inhibitor; and PD98059, a mitogen-activated protein kinase kinase inhibitor. Gö6976, a Ca(2+)-dependent PKC inhibitor, did not have any effect. In conclusion, the mitogenic effects of BK are retained in peritumour and tumour cells; hence, it is likely that BK has an important role in cancer endorsement and progression.


Subject(s)
Bradykinin/pharmacology , Breast Neoplasms/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogens/pharmacology , Signal Transduction , Analysis of Variance , Calcium/analysis , Cell Proliferation/drug effects , Enzyme Activation , Female , Humans , Immunoblotting/methods , Intracellular Fluid/chemistry , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Bradykinin/metabolism , Tumor Cells, Cultured
2.
J Cell Physiol ; 201(1): 84-96, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15281091

ABSTRACT

The kinin peptides are released during inflammation and are amongst the most potent known mediators of vasodilatation, pain, and oedema. A role in the modulation or induction of healthy breast tissue growth has been postulated for tissue kallikrein present in human milk. Moreover, tissue kallikrein was found in malignant human breast tissue and bradykinin (BK) stimulates the proliferation of immortalised breast cancer cells. Aim of the present article was to investigate whether BK also exerts mitogenic activity in normal breast epithelial cells and partially characterise the signalling machinery involved. Results show that BK increased up to 2-fold the 24 h proliferation of breast epithelial cells in primary culture, and that the BK B2 receptor (not B1) inhibitor alone fully blocked the BK response. Intracellular effects of B2 stimulation were the following: (a) the increase of free intracellular Ca(2+) concentration by a mechanism dependent upon the phospholipase C (PLC) activity; (b) the cytosol-to-membrane translocation of conventional (PKC)-alpha and -beta isozymes, novel PKC-delta, -epsilon, and -eta isozymes; (c) the phosphorylation of the extracellular-regulated kinase 1 and 2 (ERK1/2); and (d) the stimulation of the expression of c-Fos protein. EGF, a well known stimulator of cell proliferation, regulated the proliferative response in human epithelial breast cells to the same extent of BK. The effects of BK on proliferation, ERK1/2 phosphorylation, and c-Fos expression were abolished by GF109203X, which inhibits PKC-delta isozyme. Conversely, Gö6976, an inhibitor of PKC-alpha and -beta isozymes, and the 18-h treatment of cells with PMA, that led to the complete down-regulation of PKC-alpha, -beta, -epsilon, and -eta, but not of PKC-delta, did not have any effect, thereby indicating that the PKC-delta mediates the mitogenic signalling of BK. Phosphoinositide 3-kinase (PI3K), tyrosine kinase of the epidermal growth factor receptor (EGFR), and mitogen activated protein kinase kinases (MEK) inhibitors were also tested. The results suggest that EGFR, PI3K, and ERK are required for the proliferative effects of BK. In addition, the BK induced cytosol-to-membrane translocation of PKC-delta was blocked by PI3K inhibition, suggesting that PI3K is upstream to PKC-delta. In conclusion, BK has mitogenic actions in cultured human epithelial breast cells; the activation of PKC-delta through B2 receptor acts in concert with ERK and PI3K pathways to induce cell proliferation.


Subject(s)
Breast/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Receptor, Bradykinin B2/metabolism , Signal Transduction/physiology , Bradykinin/pharmacology , Calcium/metabolism , Cell Division/drug effects , Cell Division/physiology , Cells, Cultured , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Female , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Isoenzymes/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Mitogens/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction/drug effects
3.
J Cell Physiol ; 196(2): 370-7, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12811831

ABSTRACT

Angiotensin II (Ang II) induces, through AT1, intracellular Ca(2+) increase in both normal and cancerous breast cells in primary culture (Greco et al., 2002 Cell Calcium 2:1-10). We here show that Ang II stimulated, in a dose-dependent manner, the 24 h-proliferation of breast cancer cells in primary culture, induced translocation of protein kinase C (PKC)-alpha, -beta1/2, and delta (but not -epsilon, -eta, -theta, -zeta, and -iota), and phosphorylated extracellular-regulated kinases 1 and 2 (ERK1/2). The proliferative effects of Ang II were blocked by the AT1 antagonist, losartan. Also epidermal growth factor (EGF) had mitogenic effects on serum-starved breast cancer cells since induced cell proliferation after 24 h and phosphorylation of ERK1/2. The Ang II-induced proliferation of breast cancer cells was reduced by (a) Gö6976, an inhibitor of conventional PKC-alpha and -beta1, (b) AG1478, an inhibitor of the tyrosine kinase of the EGF receptor (EGFR), and (c) downregulation of 1,2-diacylglycerol-sensitive PKCs achieved by phorbol 12-myristate 13-acetate (PMA). A complete inhibition of the Ang II-induced cell proliferation was achieved using the inhibitor of the mitogen activated protein kinase kinase (MAPKK or MEK), PD098059, or using Gö6976 together with AG1478. These results indicate that in human primary cultured breast cancer cells AT1 regulates mitogenic signaling pathways by two simultaneous mechanisms, one involving conventional PKCs and the other EGFR transactivation.


Subject(s)
Angiotensin II/pharmacology , Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogens/pharmacology , Protein Kinase C/metabolism , Enzyme Activation , Epidermal Growth Factor/pharmacology , ErbB Receptors/genetics , Female , Humans , Isoenzymes/metabolism , Mitogen-Activated Protein Kinase 3 , Transcriptional Activation , Tumor Cells, Cultured
4.
J Physiol ; 546(Pt 2): 461-70, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12527732

ABSTRACT

Angiotensin II (Ang II) receptor subtype 1, AT1, is expressed by the rat thyroid. A relationship between thyroid function and several components of the renin-angiotensin system has also been established, but the Ang II cellular effects in thyrocytes and its transduction signalling remain undefined. The aim of the present paper was to investigate the modulation of the activity of the Na(+)-K(+)ATPase by Ang II and its intracellular transduction pathway in PC-Cl3 cells, an established epithelial cell line derived from rat thyroid. Here we have demonstrated, by RT-PCR analysis, the expression of mRNA for the Ang II AT1 receptor in PC-Cl3 cells; mRNA for the Ang II AT2 receptor was not detected. Ang II was not able to affect the intracellular Ca(2+) concentration in fura-2-loaded cells, but it stimulated the translocation from the cytosol to the plasma membrane of atypical protein kinase C-zeta (PKC-zeta) and -iota (PKC-) isoforms with subsequent phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1 and 2). Translocated atypical PKCs displayed temporally different activations, the activation of PKC-zeta being the fastest. PC-Cl3 cells stimulated with increasing Ang II concentrations showed dose- and time-dependent activation of the Na(+)-K(+)ATPase activity, which paralleled the PKC-zeta translocation time course. Na(+)-K(+)ATPase activity modulation was dependent on PKC activation since the PKC antagonist staurosporine abolished the stimulatory effect of Ang II. The inhibition of the ERK kinases 1 and 2 (MEK1 and 2) by PD098059 (2'-amino-3'-methoxyflavone) failed to block the effect of Ang II on the Na(+)-K(+)ATPase activity. In conclusion, our results suggest that Ang II modulates Na(+)-K(+)ATPase activity in PC-Cl3 cells through the AT1 receptor via activation of atypical PKC-zeta while the Ang II-activated PKC- appears to have other as yet unknown functions.


Subject(s)
Protein Kinase C/metabolism , Receptors, Angiotensin/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Thyroid Gland/metabolism , Adenosine Triphosphate/pharmacology , Angiotensin II/pharmacology , Animals , Biological Transport , Calcium/metabolism , Cell Line , Cytosol/metabolism , Enzyme Activation/drug effects , Gene Expression , Isoenzymes/metabolism , Mitogen-Activated Protein Kinases/metabolism , Osmolar Concentration , Rats , Receptor, Angiotensin, Type 1 , Receptor, Angiotensin, Type 2 , Receptors, Angiotensin/genetics , Thyroid Gland/cytology
5.
J Endocrinol ; 174(2): 205-14, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12176659

ABSTRACT

The effect of angiotensin II (Ang II) on Ca(2+) signalling in human primary cultured breast epithelial cells was investigated by using fura-2 as the Ca(2+) probe. Ang II (0.1-1000 nM) induced an intracellular free calcium ([Ca(2+)](i)) transient peak which was unchanged by external Ca(2+ )removal. In Ca(2+)-free medium pretreatment with thapsigargin abolished Ang II-induced Ca(2+ )release. Suppression of 1,4,5-inositol trisphosphate formation by U73122, a phospholipase C inhibitor, blocked the Ang II-induced Ca(2+) response. Losartan (DuP753), an inhibitor of Ang II type I receptor (AT1), decreased the [Ca(2+)](i) increase evoked by Ang II, while CGP4221A, an inhibitor of Ang II type II receptor (AT2) did not. AT1 desensitisation was demonstrated with respect to the Ca(2+) response after subsequent exposure of cells to Ang II and also after pretreatment for 25 min with 1000 nM phorbol 12-myristate 13-acetate. Staurosporine, an inhibitor of protein kinases C (PKC), inhibited the AT1 desensitisation. Epithelial breast cells expressed PKC-alpha, -beta1, -delta and -zeta isozymes, and Ang II provoked translocation from the cytosol to the membranes of PKC-alpha, -beta1, and -delta (but not -zeta). Ang II was also able to stimulate cell proliferation in a dose-dependent manner; this effect was blocked by Gö 6976, a specific inhibitor of PKC-alpha and -beta1, the Ca(2+)-dependent isozymes. The main conclusion of this study is that the the Ang II signalling mechanism in breast epithelial cells is based on the elevation of [Ca(2+)](i )released from intracellular stores through AT1 activation. In addition, Ang II stimulates cell proliferation by the activation of PKC isozymes.


Subject(s)
Angiotensin II/pharmacology , Breast/metabolism , Calcium Signaling/drug effects , Isoenzymes/metabolism , Protein Kinase C/metabolism , Receptors, Angiotensin/metabolism , Analysis of Variance , Angiotensin Receptor Antagonists , Biological Transport/drug effects , Carbazoles/pharmacology , Cell Division/drug effects , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Epithelial Cells/metabolism , Estrenes/pharmacology , Female , Humans , Indoles/pharmacology , Losartan/pharmacology , Protein Kinase C/antagonists & inhibitors , Pyrrolidinones/pharmacology , Receptor, Angiotensin, Type 1 , Staurosporine/pharmacology , Thapsigargin/pharmacology , Type C Phospholipases/antagonists & inhibitors
6.
Cell Calcium ; 32(1): 1-10, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12127057

ABSTRACT

Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.


Subject(s)
Breast Neoplasms , Calcium/metabolism , Receptors, Angiotensin/metabolism , Angiotensin II/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Gene Expression , Humans , Receptor, Angiotensin, Type 1 , Receptors, Angiotensin/genetics , Tumor Cells, Cultured , Type C Phospholipases/metabolism , Vasoconstrictor Agents/pharmacology
7.
J Endocrinol ; 173(2): 315-23, 2002 May.
Article in English | MEDLINE | ID: mdl-12010639

ABSTRACT

Here we demonstrated, by RT-PCR analysis, the expression of both angiotensin II (Ang II) receptor subtypes, AT1 and AT2, in a breast cancer epithelial cell line, MCF-7. Ang II was not able to affect the intracellular Ca2+ concentration in Fura-2 loaded cells suggesting that AT1-mediated phospholipid hydrolysis is not involved in its intracellular transduction pathway. Ang II modulated the activity of the Na+/K+ATPase in a dose- and time-dependent manner and was mitogenic, with a dose-dependent (1-1000 nM) proliferative effect and a maximal response at 100 nM. Both Na+/K+ATPase activation and stimulation of proliferation were mediated by binding of Ang II to AT1, as the effects were completely blocked by DuP 753, a specific AT1 antagonist. CGP 42112, an AT2 antagonist, did not affect Ang II actions. The main conclusion of this study is that Ang II exerts its effects on cell proliferation and Na+/K+ATPase in breast cancer epithelial cells, MCF-7, via AT1 activation independently of the Ca(2+) signalling mechanism.


Subject(s)
Angiotensin II/pharmacology , Breast Neoplasms/metabolism , Epithelial Cells/metabolism , Receptors, Angiotensin/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Angiotensin Receptor Antagonists , Cell Division/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Female , Gene Expression , Humans , Losartan/pharmacology , Oligopeptides/pharmacology , Receptor, Angiotensin, Type 1 , Receptor, Angiotensin, Type 2 , Receptors, Angiotensin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stimulation, Chemical , Tumor Cells, Cultured
8.
J Endocrinol ; 173(2): 325-34, 2002 May.
Article in English | MEDLINE | ID: mdl-12010640

ABSTRACT

The effect of carbachol (Cch) on intracellular calcium concentration ([Ca2+]i) in eel enterocytes was examined using the fluorescent Ca2+ indicator fura-2. Cch caused a biphasic increase in [Ca2+]i, with an initial spike followed by a progressively decreasing level (over 6 min) to the initial, pre-stimulated, level. The effect of Cch was dose-dependent with a 7.5-fold increase in [Ca2+]i over basal level induced by the maximal dose of Cch (100 microM). In Ca2+-free/EGTA buffer the effect of Cch was less pronounced and the [Ca2+]i returned rapidly to basal levels. The increment of [Ca2+]i was dose-dependently attenuated in cells pre-treated with U73122, a specific inhibitor of phospholipase C, suggesting that the Cch-stimulated increment of [Ca2+]i required inositol triphosphate formation. In the presence of extracellular Ca2+, thapsigargin (TG), a specific microsomal Ca2+-ATPase inhibitor, caused a sustained rise in [Ca2+]i whereas in Ca2+-free medium the increase in [Ca2+]i was transient; in both cases, subsequent addition of Cch was without effect. When 2 mM CaCl2 were added to the cells stimulated with TG or with Cch in Ca2+-free medium, a rapid increase in [Ca2+]i was detected, corresponding to the capacitative Ca2+ entry. Thus, both TG and Cch depleted intracellular Ca2+ stores and stimulated influx of extracellular Ca2+ consistent with capacitative Ca2+ entry. K+ depolarization obtained with increasing concentrations of KCl in the extracellular medium induced a dose-related increase in [Ca2+]i which was blocked by 2 microM nifedipine, a non-specific L-type Ca2+ channel blocker. Nifedipine also changed significantly the height of the Ca2+ transient, and the rate of decrement to the pre-stimulated [Ca2+]i level, indicating that Ca2+ entry into enterocytes also occurs through an L-type voltage-dependent calcium channel pathway. We also show that isolated enterocytes stimulated with increasing Cch concentrations (0.1-1000 microM) showed a dose-dependent inhibition of the Na+/K+-ATPase activity. The threshold decrease was at 1 microM Cch; it reached a maximum at 100 microM (50.5% inhibition) and did not decrease further with the use of higher dose. The effect of Cch on Na+/K+-ATPase activity was dependent on both protein kinase C (PKC) and protein phosphatase calcineurin activation since the PKC inhibitor calphostin C abolished Cch effects, while the calcineurin inhibitor FK506 augmented Cch effect. Collectively, these data establish a functional pathway by which Cch can modulate the activity of the Na+/K+-ATPase through a PKC-dependent (calphostin C-sensitive) pathway and a calcineurin-dependent (FK506-sensitive) pathway.


Subject(s)
Calcium/metabolism , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Enterocytes/metabolism , Receptors, Cholinergic/metabolism , Analysis of Variance , Animals , Calcineurin Inhibitors , Calcium Channel Blockers/pharmacology , Calcium-Transporting ATPases/antagonists & inhibitors , Dose-Response Relationship, Drug , Eels , Enterocytes/drug effects , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Naphthalenes/pharmacology , Nifedipine/pharmacology , Protein Kinase C/antagonists & inhibitors , Sirolimus/pharmacology , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase , Tacrolimus/pharmacology , Thapsigargin/pharmacology , Type C Phospholipases/antagonists & inhibitors
9.
J Endocrinol ; 168(2): 339-46, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11182772

ABSTRACT

In the eel, angiotensin II (Ang II) has a role at the level of both gill chloride and kidney tubular cells, regulating sodium balance and therefore osmoregulation. The present study extends these findings to another important osmoregulatory organ - the intestine. Enterocytes were obtained from sea-water (SW)-acclimated eels to investigate the role of Ang II on the intestinal Na+/K+ATPase activity, because in SW-acclimated animals the intestine represents an important site of water and NaCl transport from the mucosal to the serosal side. This paper demonstrates that isolated enterocytes stimulated with increasing Ang II concentrations (0.01-100 nM) showed a dose-dependent inhibition of the Na+/K+ATPase activity. The threshold decrease was at 0.01 nM Ang II; it reached a maximum at 10 nM (81.5% inhibition) and did not decrease further with the use of higher hormone doses. These hormonal effects were blocked by a specific competitive antagonist of the AT1 receptor subtype, DuP-753 (100% inhibition at 10 microM), indicating that these effects are mediated by an AT1-like receptor. Isolated enterocytes stimulated with 10 nM Ang II showed a transient increase in intracellular calcium ([Ca2+]i), followed by a lower sustained phase. Removal of extracellular Ca2+ did not reduce the initial transient response and completely abolished the plateau phase. The inhibition of the Na+/K+ATPase activity was dependent on protein kinase C (PKC) activation since PKC antagonists (calphostin C and staurosporine) abolished the inhibitory effect of Ang II, and the PKC activator phorbol 12-myristate 13-acetate reduced transporter activity. Western blot analysis with antibodies to PKC alpha, beta I, beta II, gamma, delta, epsilon, iota, eta and zeta isoforms showed that eel enterocytes expressed the conventional isoforms (alpha and beta I), the novel isoforms (delta and eta) and the atypical isoforms (zeta and iota). Ang II stimulated the translocation from the cytosol to the plasma membrane of PKC alpha, PKC delta and PKC eta isoforms. In conclusion, our results suggest that Ang II modulates intestinal Na+/K+ATPase in SW-acclimated eels via calcium mobilization and PKC activation.


Subject(s)
Angiotensin II/pharmacology , Eels/metabolism , Enterocytes/enzymology , Protein Kinase C/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Blotting, Western , Calcium/metabolism , Cell Culture Techniques , Dose-Response Relationship, Drug , Enterocytes/drug effects , Enzyme Inhibitors/pharmacology , Isoenzymes/metabolism , Protein Kinase C/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Translocation, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...