Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(33): 4918-4925, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37400285

ABSTRACT

The most common source of foodborne Salmonella infection in humans is poultry eggs and meat, such that prevention of human infection is mostly achieved by vaccination of farm animals. While inactivated and attenuated vaccines are available, both present drawbacks. This study aimed to develop a novel vaccination strategy, which combines the effectiveness of live-attenuated and safety of inactivated vaccines by construction of inducible self-destructing bacteria utilizing toxin-antitoxin (TA) systems. Hok-Sok and CeaB-CeiB toxin-antitoxin systems were coupled with three induction systems aimed for activating cell killing upon lack of arabinose, anaerobic conditions or low concentration of metallic di-cations. The constructs were transformed into a pathogenic Salmonella enterica serovar Enteritidis strain and bacteria elimination was evaluated in vitro under specific activating conditions and in vivo following administration to chickens. Four constructs induced bacterial killing under the specified conditions, both in growth media and within macrophages. Cloacal swabs of all chicks orally administered transformed bacteria had no detectable levels of bacteria within 9 days of inoculation. By day ten, no bacteria were identified in the spleen and liver of most birds. Antibody immune response was raised toward TA carrying Salmonella which resembled response toward the wildtype bacteria. The constructs described in this study led to self-destruction of virulent Salmonella enteritidis both in vitro and in inoculated animals within a period which is sufficient for the induction of a protective immune response. This system may serve as a safe and effective live vaccine platform against Salmonella as well as other pathogenic bacteria.


Subject(s)
Antitoxins , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Toxins, Biological , Animals , Humans , Chickens , Salmonella enteritidis , Vaccination/veterinary , Vaccines, Attenuated
2.
Appl Microbiol Biotechnol ; 107(1): 287-298, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36445389

ABSTRACT

Gram-negative bacteria are common and efficient protein expression systems, yet their outer membrane endotoxins can elicit undesirable toxic effects, limiting their applicability for parenteral therapeutic applications, e.g., production of vaccine components. In the bacterial genus Sphingomonas from the Alphaproteobacteria class, lipopolysaccharide (LPS) endotoxins are replaced with non-toxic glycosphingolipids (GSL), rendering it an attractive alternative for therapeutic protein production. To explore the use of sphingomonas as a safe expression system for production of proteins for therapeutic applications, in this study, Sphingobium japonicum (SJ) injected live into embryonated hen eggs proved safe and nontoxic. Multimeric viral polypeptides derived from Newcastle disease virus (NDV) designed for expression in SJ, yielded soluble proteins which were specifically recognized by antibodies raised against the whole virus. In addition, native signal peptide (SP) motifs coupled to secreted proteins in SJ identified using whole-genome computerized analysis, induced secretion of α Amylase (αAmy) and mCherry gene products. Relative to the same genes expressed without an SP, SP 104 increased the secretion of αAmy (3.7-fold) and mCherry (16.3-fold) proteins and yielded accumulation of up to 80 µg/L of the later in the culture medium. Taken together, the presented findings demonstrate the potential of this unique LPS-free gram-negative bacterial family to serve as an important tool for protein expression for both research and biotechnological purposes, including for the development of novel vaccines and as a live bacteria delivery system for protein vaccines. KEY POINTS: • Novel molecular tools for protein expression in non-model bacteria. • Bacteria with GSL instead of LPS as a potential vector for protein delivery.


Subject(s)
Chickens , Endotoxins , Animals , Female , Endotoxins/metabolism , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/chemistry , Recombinant Proteins/genetics
3.
Vaccine ; 40(8): 1098-1107, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35078662

ABSTRACT

The rapid spread of the COVID-19 pandemic, with its devastating medical and economic impacts, triggered an unprecedented race toward development of effective vaccines. The commercialized vaccines are parenterally administered, which poses logistic challenges, while adequate protection at the mucosal sites of virus entry is questionable. Furthermore, essentially all vaccine candidates target the viral spike (S) protein, a surface protein that undergoes significant antigenic drift. This work aimed to develop an oral multi-antigen SARS-CoV-2 vaccine comprised of the receptor binding domain (RBD) of the viral S protein, two domains of the viral nucleocapsid protein (N), and heat-labile enterotoxin B (LTB), a potent mucosal adjuvant. The humoral, mucosal and cell-mediated immune responses of both a three-dose vaccination schedule and a heterologous subcutaneous prime and oral booster regimen were assessed in mice and rats, respectively. Mice receiving the oral vaccine compared to control mice showed significantly enhanced post-dose-3 virus-neutralizing antibody, anti-S IgG and IgA production and N-protein-stimulated IFN-γ and IL-2 secretion by T cells. When administered as a booster to rats following parenteral priming with the viral S1 protein, the oral vaccine elicited markedly higher neutralizing antibody titres than did oral placebo booster. A single oral booster following two subcutaneous priming doses elicited serum IgG and mucosal IgA levels similar to those raised by three subcutaneous doses. In conclusion, the oral LTB-adjuvanted multi-epitope SARS-CoV-2 vaccine triggered versatile humoral, cellular and mucosal immune responses, which are likely to provide protection, while also minimizing technical hurdles presently limiting global vaccination, whether by priming or booster programs.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunoglobulin A , Immunoglobulin G , Mice , Pandemics , Rats , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
4.
Viral Immunol ; 25(1): 55-62, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22225471

ABSTRACT

Infectious bronchitis virus (IBV) is prevented primarily by the use of live attenuated vaccines, which are known to have a limited strain range of protection. Alternative vaccines against the emerging new virus strains can improve control of the disease. The aim of this study was to evaluate the immunogenic potential of two recombinant viral proteins, when administered by eyedrop, without the assistance of a vector. The recombinant S1 (rS1) and N (rN) proteins of the M41 strain expressed in E. coli were tested, and the live attenuated vaccine H120 was used as a positive control. Protection was evaluated by re-isolation of virus from tracheas of vaccinated chickens after challenge with strain M41. After three immunizations, rS1 glycoprotein induced 40% protection, while vaccination with rN provided no protection. Vaccination with rS1, rN, or H120 induced a cellular immune response as demonstrated by in vitro ChIFN-γ production by splenocytes of vaccinated birds. Vaccination with H120, and to a lesser extent rS1, induced HI and virus-specific IgG antibody production. These findings indicate that recombinant viral proteins administered through the mucosal route can evoke an immune response without the assistance of a vector.


Subject(s)
Infectious bronchitis virus/immunology , Membrane Glycoproteins/immunology , Nucleocapsid Proteins/immunology , Poultry Diseases/immunology , Recombinant Proteins/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Administration, Mucosal , Animals , Antibodies, Viral/blood , Chickens , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Nucleocapsid Proteins , Infectious bronchitis virus/metabolism , Interferon-gamma/biosynthesis , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/genetics , Nucleocapsid Proteins/administration & dosage , Nucleocapsid Proteins/genetics , Poultry Diseases/prevention & control , Poultry Diseases/virology , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Spike Glycoprotein, Coronavirus , Vaccination , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...