Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 284(6): H2069-77, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12574001

ABSTRACT

Mice lacking catecholamines die before birth, some with cardiovascular abnormalities. To investigate the role of catecholamines in development, embryonic day 12.5 (E12.5) fetuses were cultured and heart rate monitored. Under optimal oxygenation, wild-type and catecholamine-deficient fetuses had the same initial heart rate (200-220 beats/min), which decreased by 15% in wild-type fetuses during 50 min of culture. During the same culture period, catecholamine-deficient fetuses dropped their heart rate by 35%. Hypoxia reduced heart rate of wild-type fetuses by 35-40% in culture and by 20% in utero, assessed by echocardiography. However, catecholamine-deficient fetuses exhibited greater hypoxia-induced bradycardia, reducing their heart rate by 70-75% in culture. Isoproterenol, a beta-adrenergic receptor (beta-AR) agonist, reversed this extreme bradycardia, restoring the rate of catecholamine-deficient fetuses to that of nonmutant siblings. Moreover, isoproterenol rescued 100% of catecholamine-deficient pups to birth in a dose-dependent, stereo-specific manner when administered in the dam's drinking water. An alpha-AR agonist was without effect. When wild-type fetuses were cultured with adrenoreceptor antagonists to create pharmacological nulls, blockade of alpha-ARs with 10 microM phentolamine or beta-ARs with 10 microM bupranolol alone or in combination did not reduce heart rate under optimal oxygenation. However, when combined with hypoxia, beta-AR blockade reduced heart rate by 35%. In contrast, the muscarinic blocker atropine and the alpha-AR antagonist phentolamine had no effect. These data suggest that beta-ARs mediate survival in vivo and regulate heart rate in culture. We hypothesize that norepinephrine, acting through beta-ARs, maintains fetal heart rate during periods of transient hypoxia that occur throughout gestation, and that catecholamine-deficient fetuses die because they cannot withstand hypoxia-induced bradycardia.


Subject(s)
Catecholamines/physiology , Fetus/physiology , Heart Rate, Fetal/physiology , Receptors, Adrenergic, beta/physiology , Survival/physiology , Adrenergic beta-Antagonists/pharmacology , Animals , Animals, Newborn , Blood Vessels/pathology , Dopamine beta-Hydroxylase/genetics , Dopamine beta-Hydroxylase/physiology , Echocardiography, Doppler , Epinephrine/physiology , Female , Hypoxia/physiopathology , Mice , Mice, Inbred ICR , Mice, Knockout , Norepinephrine/physiology , Organ Culture Techniques , Pregnancy , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/physiology
2.
Neurotoxicol Teratol ; 24(6): 733-41, 2002.
Article in English | MEDLINE | ID: mdl-12460655

ABSTRACT

Use of chlorpyrifos (CPF) has been curtailed due to its developmental neurotoxicity. In rats, postnatal CPF administration produces lasting changes in cognitive performance, but less information is available about the effects of prenatal exposure. We administered CPF to pregnant rats on gestational days (GD) 17-20, a peak period of neurogenesis, using doses (1 or 5 mg/kg/day) below the threshold for fetal growth impairment. We then evaluated performance in the T-maze, Figure-8 apparatus and 16-arm radial maze, beginning in adolescence and continuing into adulthood. CPF elicited initial locomotor hyperactivity in the T-maze. Females showed slower habituation in the Fig. 8 maze; no effects were seen in males. In the radial-arm maze, females showed impaired choice accuracy for both working and reference memory and again, males were unaffected. Despite the deficits, all animals eventually learned the maze with continued training. At that point, we challenged them with the muscarinic antagonist, scopolamine, to determine the dependence of behavioral performance on cholinergic function. Whereas control females showed impairment with scopolamine, CPF-exposed females did not, implying that the delayed acquisition of the task had been accomplished through alternative mechanisms. The differences were specific to muscarinic circuits, as control and CPF groups responded similarly to the nicotinic antagonist, mecamylamine. Surprisingly, adverse effects of CPF were greater in the group receiving 1 mg/kg as compared to 5 mg/kg. Promotional effects of acetylcholine (ACh) on cell differentiation may thus help to offset CPF-induced developmental damage that occurs through other noncholinergic mechanisms. Our results indicate that late prenatal exposure to CPF induces long-term changes in cognitive performance that are distinctly gender-selective. Additional defects may be revealed by similar strategies that subject the animals to acute challenges, thus, uncovering the adaptive mechanisms that maintain basal performance.


Subject(s)
Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Cognition Disorders/chemically induced , Maze Learning/drug effects , Mental Disorders/chemically induced , Motor Activity/drug effects , Prenatal Exposure Delayed Effects , Animals , Animals, Newborn , Brain/drug effects , Brain/physiopathology , Cholinergic Fibers/drug effects , Cholinergic Fibers/physiology , Cognition Disorders/physiopathology , Dose-Response Relationship, Drug , Female , Male , Maze Learning/physiology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Mental Disorders/physiopathology , Motor Activity/physiology , Muscarinic Antagonists/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Reaction Time/physiology , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/metabolism , Scopolamine/pharmacology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...