Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mater Adv ; 2(12): 3862-3870, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-34223168

ABSTRACT

The assembly-disassembly-organisation-reassembly (ADOR) process has led to the discovery of numerous zeolite structures, albeit limited to materials with decreased pore size in relation to the parent germanosilicate zeolite. This limitation stems from the rapid decrease in d-spacing upon hydrolysis (disassembly). Nevertheless, we have artificially increased the d-spacing of layered IPC-1P by intercalating organic species. Furthermore, we have reconstructed double four rings (D4R) between layers, thus transforming IPC-1P back into the parent UTL zeolite. This reconstruction has provided not only germanosilicate but also a new, high-silica UTL zeolite (Si/Ge = 481). Therefore, our "reverse ADOR" opens up new synthetic routes towards promising extra-large-pore zeolite-based materials with new chemical compositions.

2.
Angew Chem Int Ed Engl ; 57(43): 14188-14192, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30159980

ABSTRACT

Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine π-conjugated electron-withdrawing triazine (C3 N3 ) and electron donating, sulfur-containing moieties as covalently bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects.

3.
Chemistry ; 22(48): 17377-17386, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27754569

ABSTRACT

Germanosilicate zeolites often suffer from low hydrothermal stability due to the high content of Ge. Herein, we investigated the post-synthesis introduction of Al accompanied by stabilization of selected germanosilicates by degermanation/alumination treatments. The influence of chemical composition and topology of parent germanosilicate zeolites (ITH, IWW, and UTL) on the post-synthesis incorporation of Al was studied. Alumination of ITH (Si/Ge=2-13) and IWW (Si/Ge=3-7) zeolites resulted in the partial substitution of Ge for Al (up to 80 %), which was enhanced with a decrease of Ge content in the parent zeolite. In contrast, in extra-large pore zeolite UTL (Si/Ge=4-6) the hydrolysis of the interlayer Ge-O bonds dominated over substitution. The stabilization of zeolite UTL was achieved using a novel two-step degermanation/alumination procedure by the partial post-synthesis substitution of Ge for Si followed by alumination. This new method of stabilization and incorporation of strong acid sites may extend the utilization of germanosilicate zeolites, which has been until now been limited.

4.
Dalton Trans ; 45(36): 14124-30, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27527381

ABSTRACT

The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination.

5.
Phys Chem Chem Phys ; 18(27): 18063-73, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27326803

ABSTRACT

The catalytic activity and the adsorption properties of zeolites depend on their topology and composition. For a better understanding of the structure-activity relationship it is advantageous to focus just on one of these parameters. Zeolites synthesized recently by the ADOR protocol offer a new possibility to investigate the effect of the channel diameter on the adsorption and catalytic properties of zeolites: UTL, OKO, and PCR zeolites consist of the same dense 2D layers (IPC-1P) that are connected with different linkers (D4R, S4R, O-atom, respectively) resulting in the channel systems of different sizes (14R × 12R, 12R × 10R, 10R × 8R, respectively). Consequently, extra-framework cation sites compensating charge of framework Al located in these dense 2D layers (channel-wall sites) are the same in all three zeolites. Therefore, the effect of the zeolite channel size on the Lewis properties of the cationic sites can be investigated independent of other factors determining the quality of Lewis sites. UTL, OKO, and PCR and pillared 2D IPC-1PI materials were prepared in Li-form and their properties were studied by a combination of experimental and theoretical methods. Qualitatively different conclusions are drawn for Li(+) located at the channel-wall sites and at the intersection sites (Li(+) located at the intersection of two zeolite channels): the Lewis acid strength of Li(+) at intersection sites is larger than that at channel-wall sites. The Lewis acid strength of Li(+) at channel-wall sites increases with decreasing channel size. When intersecting channels are small (10R × 8R in PCR) the intersection Li(+) sites are no longer stable and Li(+) is preferentially located at the channel-wall sites. Last but not least, the increase in adsorption heats with the decreasing channel size (due to enlarged dispersion contribution) is clearly demonstrated.

6.
Chem Soc Rev ; 45(12): 3400-38, 2016 06 13.
Article in English | MEDLINE | ID: mdl-26489452

ABSTRACT

Many chemical compositions produce layered solids consisting of extended sheets with thickness not greater than a few nanometers. The layers are weakly bonded together in a crystal and can be modified into various nanoarchitectures including porous hierarchical structures. Several classes of 2-dimensional (2D) materials have been extensively studied and developed because of their potential usefulness as catalysts and sorbents. They are discussed in this review with focus on clays, layered transition metal oxides, silicates, layered double hydroxides, metal(iv) phosphates and phosphonates, especially zirconium, and zeolites. Pillaring and delamination are the primary methods for structural modification and pore tailoring. The reported approaches are described and compared for the different classes of materials. The methods of characterization include identification by X-ray diffraction and microscopy, pore size analysis and activity assessment by IR spectroscopy and catalytic testing. The discovery of layered zeolites was a fundamental breakthrough that created unprecedented opportunities because of (i) inherent strong acid sites that make them very active catalytically, (ii) porosity through the layers and (iii) bridging of 2D and 3D structures. Approximately 16 different types of layered zeolite structures and modifications have been identified as distinct forms. It is also expected that many among the over 200 recognized zeolite frameworks can produce layered precursors. Additional advances enabled by 2D zeolites include synthesis of layered materials by design, hierarchical structures obtained by direct synthesis and top-down preparation of layered materials from 3D frameworks.

7.
Nat Chem ; 8(1): 58-62, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26673264

ABSTRACT

Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum--why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such 'unfeasible' zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.

8.
Chem Soc Rev ; 44(20): 7177-206, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-25946705

ABSTRACT

A novel methodology, called ADOR (assembly-disassembly-organisation-reassembly), for the synthesis of zeolites is reviewed here in detail. The ADOR mechanism stems from the fact that certain chemical weakness against a stimulus may be present in a zeolite framework, which can then be utilized for the preparation of new solids through successive manipulation of the material. In this review, we discuss the critical factors of germanosilicate zeolites required for application of the ADOR protocol and describe the mechanism of hydrolysis, organisation and condensation to form new zeolites starting from zeolite UTL. Last but not least, we discuss the potential of this methodology to form other zeolites and the prospects for future investigations.

9.
Angew Chem Int Ed Engl ; 53(48): 13210-4, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25284344

ABSTRACT

Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings.

10.
Chemistry ; 20(33): 10446-50, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25042288

ABSTRACT

Top-down synthesis of 2D materials from a parent 3D zeolite with subsequent post-synthetic modification is an interesting method for synthesis of new materials. Assembly, disassembly, organisation, reassembly (ADOR) processes towards novel materials based on the zeolite UTL are now established. Herein, we present the first study of these materials by atomic force microscopy (AFM). AFM was used to monitor the ADOR process through observation of the changes in crystal surface and step height of the products. UTL surfaces were generally complex and contained grain boundaries and low-angle intergrowths, in addition to regular terraces. Hydrolysis of UTL to IPC-1P did not have adverse effects on the surfaces as compared to UTL. The layers remained intact after intercalation and calcination forming novel materials IPC-2 and IPC-4. Measured step heights gave good correlation with the X-ray diffraction determined d200 -spacing in these materials. However, swelling gave rise to significant changes to the surface topography, with significantly less regular terrace shapes. The pillared material yielded the roughest surface with ill-defined surface features. The results support a mechanism for the majority of these materials in which the UTL layers remain intact during the ADOR process as opposed to dissolving and recrystallising during each step.

11.
Angew Chem Int Ed Engl ; 53(27): 7048-52, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24825119

ABSTRACT

Hydrolysis of germanosilicate zeolites with the IWW structure shows two different outcomes depending on the composition of the starting materials. Ge-rich IWW (Si/Ge=3.1) is disassembled into a layered material (IPC-5P), which can be reassembled into an almost pure silica IWW on treatment with diethoxydimethylsilane. Ge-poor IWW (Si/Ge=6.4) is not completely disassembled on hydrolysis, but retains some 3D connectivity. This structure can be reassembled into IWW by incorporation of Al to fill the defects left when the Ge is removed.

12.
Phys Chem Chem Phys ; 16(21): 10129-41, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24549190

ABSTRACT

Brønsted-acid zeolites are currently being used as catalysts in a wide range of technological processes, spanning from the petrochemical industry to biomass upgrade, methanol to olefin conversion and the production of fine chemicals. For most of the involved chemical processes, acid strength is a key factor determining catalytic performance, and hence there is a need to evaluate it correctly. Based on simplicity, the magnitude of the red shift of the O-H stretching frequency, Δν(OH), when the Brønsted-acid hydroxyl group of protonic zeolites interacts with an adsorbed weak base (such as carbon monoxide or dinitrogen) is frequently used for ranking acid strength. Nevertheless, the enthalpy change, ΔH(0), involved in that hydrogen-bonding interaction should be a better indicator; and in fact Δν(OH) and ΔH(0) are often found to correlate among themselves, but, as shown herein, that is not always the case. We report on experimental determination of the interaction (at a low temperature) of carbon monoxide and dinitrogen with the protonic zeolites H-MCM-22 and H-MCM-56 (which have the MWW structure type) showing that the standard enthalpy of formation of OH···CO and OH···NN hydrogen-bonded complexes is distinctively smaller than the corresponding values reported in the literature for H-ZSM-5 and H-FER, and yet the corresponding Δν(OH) values are significantly larger for the zeolites having the MWW structure type (DFT calculations are also shown for H-MCM-22). These rather unexpected results should alert the reader to the risk of using the O-H frequency shift probed by an adsorbed weak base as a general indicator for ranking zeolite Brønsted acidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...