Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Vet Res ; 73(11): 1841-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23106473

ABSTRACT

OBJECTIVE: To compare pharmacokinetics and clearances of creatinine and iohexol as estimates of glomerular filtration rate (GFR) in dogs with various degrees of renal function. ANIMALS: 50 Great Anglo-Francais Tricolor Hounds with various degrees of renal function. PROCEDURES: Boluses of iohexol (40 mg/kg) and creatinine (647 mg/kg) were injected IV. Blood samples were collected before administration and 5 and 10 minutes and 1, 2, 4, 6, and 8 hours after administration. Plasma creatinine and iohexol concentrations were assayed via an enzymatic method and high-performance liquid chromatography, respectively. A noncompartmental approach was used for pharmacokinetic analysis. Pharmacokinetic variables were compared via a Bland-Altman plot and an ANOVA. RESULTS: Compared with results for creatinine, iohexol had a significantly higher mean ± SD plasma clearance (3.4 ± 0.8 mL/min/kg vs 3.0 ± 0.7 mL/min/kg) and a significantly lower mean volume of distribution at steady state (250 ± 37 mL/kg vs 539 ± 73 mL/kg), mean residence time (80 ± 31 minutes vs 195 ± 73 minutes), and mean elimination half-life (74 ± 20 minutes vs 173 ± 53 minutes). Despite discrepancies between clearances, especially for high values, the difference was < 0.6 mL/min/kg for 34 (68%) dogs. Three dogs with a low GFR (< 2 mL/min/kg) were classified similarly by both methods. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma iohexol and creatinine clearances can be used interchangeably for screening patients suspected of having chronic kidney disease (ie, low GFR), but large differences may exist for dogs with a GFR within or above the reference range.


Subject(s)
Contrast Media/pharmacokinetics , Creatinine/pharmacokinetics , Dog Diseases/metabolism , Iohexol/pharmacokinetics , Kidney Diseases/veterinary , Animals , Creatinine/blood , Dogs , Female , Glomerular Filtration Rate , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male
2.
Am J Vet Res ; 71(9): 1100-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20807152

ABSTRACT

OBJECTIVE: To compare plasma clearance of inulin and iohexol determined by use of 9 plasma samples for evaluation of glomerular filtration rate in dogs and to evaluate limited-sample approaches for evaluation of plasma clearance of these markers. ANIMALS: 43 dogs of various breeds that weighed between 5.5 and 63 kg and that had various degrees of renal function. PROCEDURES: 9 plasma samples were obtained from each dog at 5 minutes to 6 hours after IV bolus injection of iohexol and inulin. Clearance was calculated by use of results for all 9 samples (ie, reference method). Results for 3 limited-sample strategies for determination of plasma clearance of iohexol and inulin were compared with results for the reference method. RESULTS: Mean clearance of inulin and iohexol for the reference method was 2.72 and 2.48 mL/min/kg, respectively. The mean difference between clearance of these 2 markers for the reference method was 0.24 mL/min/kg. In general, use of the limited-sample strategies yielded clearance values similar to those for the reference method. More accurate estimates of clearance were obtained for iohexol than for inulin by use of the limited-sample methods. CONCLUSIONS AND CLINICAL RELEVANCE: Use of iohexol and inulin yielded similar but not identical results for plasma clearance. Accuracy for limited-sample methods would be acceptable for many clinical and research situations.


Subject(s)
Dogs/physiology , Glomerular Filtration Rate/physiology , Insulin/blood , Iohexol/metabolism , Animals , Biomarkers/blood , Body Weight , Contrast Media , Kidney/physiology , Metabolic Clearance Rate
3.
Lipids Health Dis ; 4: 23, 2005 Oct 04.
Article in English | MEDLINE | ID: mdl-16202171

ABSTRACT

BACKGROUND: In man, elevated levels of plasma plipoprotein (a) (Lp(a)) is a cardiovascular risk factor, and oxidized phospholipids are believed to play a role as modulators of inflammatory processes such as atherosclerosis. Polyamines are potent antioxidants and anti-inflammatory agents. It was therefore of interest to examine polyamines and their metabolism in LPA transgenic mice. Concentration of the polyamines putrescine, spermidine and spermine as well as the activity of peroxisomal polyamine oxidase and two other peroxisomal enzymes, acyl-CoA oxidase and catalase were measured. The mice were fed either a standard diet or a diet high in fat and cholesterol (HFHC). Some of the mice in each feeding group were in addition given aminoguanidine (AG), a specific inhibitor of diamine oxidase, which catalyses degradation of putrescine, and also inhibits non-enzymatic glycosylation of protein which is implicated in the aetiology of atherosclerosis in diabetic patients. Non-transgenic mice were used as controls. RESULTS: Intestinal peroxisomal polyamine oxidase activity was significantly higher in LPA transgenic mice than in the non-transgenic mice, while intestinal peroxisomal catalase activity was significantly lower. Hepatic beta-oxidation increased in Lp(a) transgenic mice fed the HFHC diet, but not in those on standard diet. Hepatic spermidine concentration was increased in all mice fed the HFHC diet compared to those fed a standard diet, while spermine concentration was decreased. With exception of the group fed only standard diet, transgenic mice showed a lower degree of hepatic steatosis than non-transgenic mice. AG had no significant effect on hepatic steatosis. CONCLUSION: The present results indicate a connection between peroxisomal enzyme activity and the presence of the human LPA gene in the murine genome. The effect may be a result of changes in oxidative processes in lipid metabolism rather than resulting from a direct effect of the LPA construct on the peroximal gene expression.


Subject(s)
Diet, Atherogenic , Lipoprotein(a)/genetics , Peroxisomes/enzymology , Polyamines/metabolism , Acyl-CoA Oxidase/metabolism , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Animals , Catalase/metabolism , Cholesterol, Dietary/administration & dosage , Dietary Fats/administration & dosage , Fatty Liver/chemically induced , Fatty Liver/pathology , Guanidines/pharmacology , Humans , Intestine, Small/enzymology , Intestine, Small/ultrastructure , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Mice , Mice, Transgenic , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Peroxisomes/drug effects , Polyamine Oxidase
4.
Pathophysiology ; 11(4): 201-208, 2005 May.
Article in English | MEDLINE | ID: mdl-15837165

ABSTRACT

BACKGROUND:: Apolipoprotein(a) (apo(a)), which is part of the atherogenic lipoprotein Lp(a), shares structural homology with plasminogen (plg). Genes coding for plasminogen (PLG) and apo(a) (LPA) are linked and situated 40kb apart in the telomeric region of the long arm of chromosome 6. LPA is naturally expressed only in primates and hedgehogs. Thus, access to knowledge regarding the mechanism by which LPA expression is regulated is limited due to shortage of appropriate animal models. However, mice transgenic for the human LPA gene have been produced. Lp(a) levels in man are genetically determined and not altered significantly by dietary changes. In contrast, mice transgenic for LPA-yeast artificial chromosome (LPA-YAC) have markedly reduced apo(a) levels after maintenance on a high-fat diet. LPA-YAC carries the 40kb LPA-PLG intergenic region, which includes a putative binding site for peroxisome proliferator-activated receptor alpha (PPARalpha). Therefore, we examined if fibrates, which exert their effect via PPARalpha, could alter LPA expression in transgenic mice. METHODS:: Two LPA transgenic mouse lines with or without the LPA-PLG intergenic region we fed either PPARalpha agonist fenofibrate (FF) or 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY 14643) containing diets for 3 weeks. For the study of serum apo(a) levels, blood were sampled prior the experiment and when the animals were sacrificed. For the study of gene expression pattern pieces of livers were collected and submerged in RNAlater buffer and stored at -70 degrees C until analysis by quantitative PCR. RESULTS AND CONCLUSIONS:: The results showed that fibrates reduce LPA expression in LPA-YAC transgenic mice, but have no impact on hepatic apo(a) mRNA or serum apo(a) protein levels in LPA-cDNA transgenic mice, which lack the LPA-PLG intergenic region. This suggests that the effect of fibrates on LPA expression is mediated upstream of the LPA gene. However, on the basis of current data it is not possible to conclude that PPARalpha is the primary factor that represses LPA expression in LPA-YAC transgenic mice. Negative correlation between FXR and apo(a) mRNA levels, in addition to putative FXR DNA binding sequence in LPA-PLG intergenic region, suggest that it is equally likely that reduced expression of LPA could be a secondary consequence of PPARalpha activation on other genes, such as FXR.

5.
Pathophysiology ; 11(2): 113-120, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15364123

ABSTRACT

Background: Lp(a) lipoprotein (Lp(a)) contains polymorphic glycoprotein, apolipoprotein(a) (apo(a)) and low density lipoprotein (LDL). The extensive homology between apo(a) and plasminogen is believed to contribute to the pathogenicity of apo(a), but the precise mechanisms by which Lp(a) participates in atherogenesis is still unknown. We used LPA-yeast artificial chromosome (LPA-YAC) transgenic mice with or without the human APOB (hAPOB) gene to study pathogenicity of apo(a)/Lp(a) and illucidate its role in regulation of serum lipid levels. Methods: Middle-aged (1-year-old) mice were fed a control (AIN-76), a high-cholesterol (HC) or a high-cholesterol/high-fat (HCHF) diet for 7 weeks. For the study of serum total apo(a) and lipid levels, mice were sampled prior to the experiment, at 2 weeks and at 7 weeks when the animals were sacrificed. Hearts with ascending aorta were fixed in formalin, embedded in gelatine and prepared for sections on a cryostat. Livers were washed in ice cold saline and submerged in RNAlater trade mark buffer and stored at -70 degrees C until mRNA analysis. Results: Wild type mice fed the control diet did not develop aortic lesions. Presence of the LPA gene was sufficient to induce development of aortic lesions, but neither coexpression of the hAPOB gene nor feeding the HC diet or the HCHF diet augmented the development of aortic lesions in LPA-YAC transgenic mice. On the control diet transgenic females had larger aortic lesion size than transgenic males. Furthermore, aortic lesions in transgenic females were associated with calcification more often than in transgenic males. Serum total cholesterol levels were higher both in wild type and LPA-YAC transgenic males than in females mainly because of higher serum high-density lipoprotein cholesterol levels. HC and HCHF feeding had more pronounced effect on total cholesterol levels in LPA-YAC/hAPOB transgenic mice than in either wild type or LPA-YAC transgenic mice, due to increased low density lipoprotein cholesterol levels. Furthermore, these diets reduced serum total apo(a) levels in both transgenic mouse lines. Conclusion: Expression of the human LPA gene in mice is sufficient to trigger development of aortic lesions. Similar frequency of calcified lesions in LPA-YAC transgenic mice with or without hAPOB gene may suggest that apo(a) is the part of the Lp(a) molecule that causes aortic calcification. The basis for reduced serum total apo(a) level in response to cholesterol feeding is not clear, but interplay between LPA and factors involved in cholesterol or bile acid homeostasis is worth of future studies.

6.
Lipids Health Dis ; 3: 8, 2004 May 11.
Article in English | MEDLINE | ID: mdl-15134578

ABSTRACT

BACKGROUND: The Lp(a) lipoprotein (Lp(a)) consists of the polymorphic glycoprotein apolipoprotein(a) (apo(a)), which is attached by a disulfide bond to apolipoprotein B (apoB). Apo(a), which has high homology with plasminogen, is present only in primates and hedgehogs. However, transgenic mice and rabbits with high serum apo(a) levels exist. Liver is the main site for apo(a) synthesis, but the site of removal is uncertain. To examine differences between transgenic mice expressing the LPA gene and mice capable of forming Lp(a) particles, LPA-YAC transgenic mice and hAPOB transgenic mice were crossed and their offspring examined. RESULTS: Comparison of LPA-YAC with LPA-YAC/hAPOB transgenic mice showed that LPA-YAC/hAPOB transgenic mice have higher serum total apo(a) and total cholesterol level than mice lacking the hAPOB gene. However, hepatic apo(a) mRNA level was higher in LPA-YAC transgenic mice than in LPA-YAC/hAPOB transgenic mice. Feeding of a high-cholesterol/high-fat diet to male LPA-YAC transgenic mice with or without the hAPOB gene resulted in reduced serum total apo(a) and hepatic apo(a) mRNA level. CONCLUSION: In conclusion, the higher serum total apo(a) level in LPA-YAC/hAPOB transgenic mice than in LPA-YAC transgenic mice is not caused by increased apo(a) synthesis. Lower hepatic apo(a) mRNA level in LPA-YAC/hAPOB than in LPA-YAC transgenic mice may suggest that the increase in total apo(a) level is a result of apo(a) accumulation in serum. Furthermore, observed higher serum total cholesterol level in LPA-YAC/hAPOB transgenic mice than either in wild type or LPA-YAC transgenic mice may further suggest that human APOB transgenicity is a factor that contributes to increased serum total apo(a) and cholesterol levels. Our results on reduced serum total apo(a) and hepatic apo(a) mRNA levels in HCHF fed male LPA-YAC transgenic mice confirm earlier findings in females, and show that there are no sex difference in mechanisms for lowering apo(a) level in response to HCHF feeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...