Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLOS Digit Health ; 3(2): e0000430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319890

ABSTRACT

The COVID-19 pandemic offers an unprecedented natural experiment providing insights into the emergence of collective behavioral changes of both exogenous (government mandated) and endogenous (spontaneous reaction to infection risks) origin. Here, we characterize collective physical distancing-mobility reductions, minimization of contacts, shortening of contact duration-in response to the COVID-19 pandemic in the pre-vaccine era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 million anonymized, opted-in U.S. devices. We define five indicators of users' mobility and proximity to investigate how the emerging collective behavior deviates from typical pre-pandemic patterns during the first nine months of the COVID-19 pandemic. We analyze both the dramatic changes due to the government mandated mitigation policies and the more spontaneous societal adaptation into a new (physically distanced) normal in the fall 2020. Using the indicators here defined we show that: a) during the COVID-19 pandemic, collective physical distancing displayed different phases and was heterogeneous across geographies, b) metropolitan areas displayed stronger reductions in mobility and contacts than rural areas; c) stronger reductions in commuting patterns are observed in geographical areas with a higher share of teleworkable jobs; d) commuting volumes during and after the lockdown period negatively correlate with unemployment rates; and e) increases in contact indicators correlate with future values of new deaths at a lag consistent with epidemiological parameters and surveillance reporting delays. In conclusion, this study demonstrates that the framework and indicators here presented can be used to analyze large-scale social distancing phenomena, paving the way for their use in future pandemics to analyze and monitor the effects of pandemic mitigation plans at the national and international levels.

2.
Nat Comput Sci ; 4(1): 43-56, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177491

ABSTRACT

Here we represent human lives in a way that shares structural similarity to language, and we exploit this similarity to adapt natural language processing techniques to examine the evolution and predictability of human lives based on detailed event sequences. We do this by drawing on a comprehensive registry dataset, which is available for Denmark across several years, and that includes information about life-events related to health, education, occupation, income, address and working hours, recorded with day-to-day resolution. We create embeddings of life-events in a single vector space, showing that this embedding space is robust and highly structured. Our models allow us to predict diverse outcomes ranging from early mortality to personality nuances, outperforming state-of-the-art models by a wide margin. Using methods for interpreting deep learning models, we probe the algorithm to understand the factors that enable our predictions. Our framework allows researchers to discover potential mechanisms that impact life outcomes as well as the associated possibilities for personalized interventions.


Subject(s)
Algorithms , Natural Language Processing , Humans , Records
3.
J Neurosci ; 43(34): 5989-5995, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612141

ABSTRACT

The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity. Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper understanding of the brain and its functions, as well as offering new challenges for network science.


Subject(s)
Neurosciences , Humans , Brain , Drive , Neurons , Research Personnel
4.
ArXiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214134

ABSTRACT

The brain is a complex system comprising a myriad of interacting elements, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such intricate systems, offering a framework for integrating multiscale data and complexity. Here, we discuss the application of network science in the study of the brain, addressing topics such as network models and metrics, the connectome, and the role of dynamics in neural networks. We explore the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease, and discuss the potential for collaboration between network science and neuroscience communities. We underscore the importance of fostering interdisciplinary opportunities through funding initiatives, workshops, and conferences, as well as supporting students and postdoctoral fellows with interests in both disciplines. By uniting the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way towards a deeper understanding of the brain and its functions.

5.
Nat Commun ; 14(1): 1989, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031187

ABSTRACT

Identifying novel drug-target interactions is a critical and rate-limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, here we show that state-of-the-art models fail to generalize to novel (i.e., never-before-seen) structures. We unveil the mechanisms responsible for this shortcoming, demonstrating how models rely on shortcuts that leverage the topology of the protein-ligand bipartite network, rather than learning the node features. Here we introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training to improve binding predictions for novel proteins and ligands. We validate AI-Bind predictions via docking simulations and comparison with recent experimental evidence, and step up the process of interpreting machine learning prediction of protein-ligand binding by identifying potential active binding sites on the amino acid sequence. AI-Bind is a high-throughput approach to identify drug-target combinations with the potential of becoming a powerful tool in drug discovery.


Subject(s)
Proteins , Ligands , Proteins/metabolism , Protein Binding , Binding Sites , Amino Acid Sequence
6.
Nature ; 617(7960): 344-350, 2023 May.
Article in English | MEDLINE | ID: mdl-37076624

ABSTRACT

The criminal legal system in the USA drives an incarceration rate that is the highest on the planet, with disparities by class and race among its signature features1-3. During the first year of the coronavirus disease 2019 (COVID-19) pandemic, the number of incarcerated people in the USA decreased by at least 17%-the largest, fastest reduction in prison population in American history4. Here we ask how this reduction influenced the racial composition of US prisons and consider possible mechanisms for these dynamics. Using an original dataset curated from public sources on prison demographics across all 50 states and the District of Columbia, we show that incarcerated white people benefited disproportionately from the decrease in the US prison population and that the fraction of incarcerated Black and Latino people sharply increased. This pattern of increased racial disparity exists across prison systems in nearly every state and reverses a decade-long trend before 2020 and the onset of COVID-19, when the proportion of incarcerated white people was increasing amid declining numbers of incarcerated Black people5. Although a variety of factors underlie these trends, we find that racial inequities in average sentence length are a major contributor. Ultimately, this study reveals how disruptions caused by COVID-19 exacerbated racial inequalities in the criminal legal system, and highlights key forces that sustain mass incarceration. To advance opportunities for data-driven social science, we publicly released the data associated with this study at Zenodo6.


Subject(s)
COVID-19 , Criminals , Prisoners , Racial Groups , Humans , Black or African American/legislation & jurisprudence , Black or African American/statistics & numerical data , COVID-19/epidemiology , Criminals/legislation & jurisprudence , Criminals/statistics & numerical data , Prisoners/legislation & jurisprudence , Prisoners/statistics & numerical data , United States/epidemiology , White/legislation & jurisprudence , White/statistics & numerical data , Datasets as Topic , Hispanic or Latino/legislation & jurisprudence , Hispanic or Latino/statistics & numerical data , Racial Groups/legislation & jurisprudence , Racial Groups/statistics & numerical data
7.
Nature ; 595(7866): 197-204, 2021 07.
Article in English | MEDLINE | ID: mdl-34194046

ABSTRACT

It has been the historic responsibility of the social sciences to investigate human societies. Fulfilling this responsibility requires social theories, measurement models and social data. Most existing theories and measurement models in the social sciences were not developed with the deep societal reach of algorithms in mind. The emergence of 'algorithmically infused societies'-societies whose very fabric is co-shaped by algorithmic and human behaviour-raises three key challenges: the insufficient quality of measurements, the complex consequences of (mis)measurements, and the limits of existing social theories. Here we argue that tackling these challenges requires new social theories that account for the impact of algorithmic systems on social realities. To develop such theories, we need new methodologies for integrating data and measurements into theory construction. Given the scale at which measurements can be applied, we believe measurement models should be trustworthy, auditable and just. To achieve this, the development of measurements should be transparent and participatory, and include mechanisms to ensure measurement quality and identify possible harms. We argue that computational social scientists should rethink what aspects of algorithmically infused societies should be measured, how they should be measured, and the consequences of doing so.


Subject(s)
Algorithms , Social Conditions/statistics & numerical data , Social Sciences/methods , Computer Simulation , Datasets as Topic , Guidelines as Topic , Humans , Politics , Social Conditions/economics
8.
IEEE Trans Vis Comput Graph ; 12(6): 1427-39, 2006.
Article in English | MEDLINE | ID: mdl-17073366

ABSTRACT

Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.


Subject(s)
Algorithms , Computer Graphics , Information Storage and Retrieval/methods , Social Support , User-Computer Interface , Computer Simulation , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...