Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
HardwareX ; 17: e00515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38384284

ABSTRACT

Material extrusion Additive Manufacturing (AM), is one of the most widely practiced methods of AM. Fused Filament Fabrication (FFF) is what most associate with AM, as it is relatively inexpensive, and highly accessible, involving feeding plastic filament into a hot-end that melts and extrudes from a nozzle as the toolhead moves along the toolpath. Direct Ink Write (DIW) 3D printing falls into this same category of AM, however is primarily practiced in laboratory settings to construct novel parts from flowable feedstock materials. DIW printers are relatively expensive and often depend on custom software to print a part, limiting user-specificity. There have been recent advancements in multi-material and functionally graded DIW, but the systems are highly custom and the methods used to achieve multi-material prints are openly available to the public. The following article outlines the construction and operation method of a DIW system that is capable of printing that can produce compositionally-graded components using a dual feed progressive cavity pump extruder equipped with a dynamic mixer. The extruder and its capabilities to vary material composition while printing are demonstrated using a Prusa i3 MK3S+ desktop fused filament fabrication printer as the gantry system. This provides users ease of operation, and the capability of further tailoring to specific needs.

2.
Sci Rep ; 6: 22568, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26932846

ABSTRACT

The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

SELECTION OF CITATIONS
SEARCH DETAIL
...