Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(5): 2370-2387, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38259134

ABSTRACT

The electronic structures and spectroscopic behavior of three high-spin FeII complexes of fluorinated alkoxides were studied: square-planar {K(DME)2}2[Fe(pinF)2] (S) and quasi square-planar {K(C222)}2[Fe(pinF)2] (S') and trigonal-planar {K(18C6)}[Fe(OC4F9)3] (T) where pinF = perfluoropinacolate and OC4F9 = tris-perfluoro-t-butoxide. The zero-field splitting (ZFS) and hyperfine structure parameters of the S = 2 ground states were determined using field-dependent 57Fe Mössbauer and high-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopies. The spin Hamiltonian parameters were analyzed with crystal field theory and corroborated by density functional theory (DFT) and ab initio complete active space self-consistent field (CASSCF) calculations. Whereas the ZFS tensor of S has a small rhombicity, E/D = 0.082, and a positive D = 15.17 cm-1, T exhibits a negative D = -9.16 cm-1 and a large rhombicity, E/D = 0.246. Computational investigation of the structural factors suggests that the ground-state electronic configuration and geometry of T's Fe site are determined by the interaction of [Fe(OC4F9)3]- with {K(18C6)}+. In contrast, two distinct countercations of S/S' have a negligible influence on their [Fe(pinF)2]2- moieties. Instead, the distortions in S' are likely induced by the chelate ring conformation change from δλ, observed for S, to the δδ conformation, determined for S'.

2.
Inorg Chem ; 60(17): 13376-13387, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34382778

ABSTRACT

A new template condensation reaction has been discovered in a mixture of Pt(II), thiobenzamide, and base. Four complexes of the general form [Pt(ctaPhR)2], R = CH3 (1a), H (1b), F (1c), Cl (1d), cta = condensed thioamide, have been prepared under similar conditions and thoroughly characterized by 1H NMR and UV-vis-NIR spectroscopy, (spectro)electrochemistry, elemental analysis, and single-crystal X-ray diffraction. The ligand is redox active and can be reduced from the initial monoanion to a dianionic and then trianionic state. Chemical reduction of 1a with [Cp2Co] yielded [Cp2Co]2[Pt(ctaPhCH3)2], [Cp2Co]2[1a], which has been similarly characterized with the addition of EPR spectroscopy and SQUID magnetization. The singly reduced form containing [1a]1-, (nBu4N)[Pt(ctaPhCH3)2], has been generated in situ and characterized by UV-vis and EPR spectroscopies. DFT studies of 1b, [1b]1-, and [1b]2- confirm the location of additional electrons in exclusively ligand-based orbitals. A detailed analysis of this redox-active ligand, with emphasis on the characteristics that favor noninnocent behavior in six-membered chelate rings, is included.

3.
Dalton Trans ; 49(39): 13773-13785, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33000834

ABSTRACT

The synthesis and characterization of a series of Sn(ii) and Sn(iv) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pinF) ligand are reported herein. Three analogs of [SnIV(pinF)3]2- with NEt3H+ (1), K+ (2), and {K(18C6)}+ (3) counter cations and two analogs of [SnII(pinF)2]2- with K+ (4) and {K(15C5)2}+ (5) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119Sn Mössbauer and NMR spectroscopies. The six-coordinate SnIV(pinF) complexes display 119Sn NMR resonances and 119Sn Mössbauer spectra similar to SnO2 (cassiterite). In contrast, the four-coordinate SnII(pinF) complexes, featuring a stereochemically-active lone pair, possess low 119Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn(ii) complexes are unreactive towards both Lewis bases (pyridine, NEt3) and acids (BX3, Et3NH+). Calculations confirm that the Sn(ii) lone pair is localized within the 5s orbital and reveal that the Sn 5px LUMO is energetically inaccessible, which effectively abates reactivity.

4.
Inorg Chem ; 59(22): 16500-16513, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33119300

ABSTRACT

A new air-stable catalyst for the oxidative dehydrogenation of benzylic alcohols under ambient conditions has been developed. The synthesis and characterization of this compound and the related monomeric and dimeric V(IV)- and V(V)-pinF (pinF = perfluoropinacolate) complexes are reported herein. Monomeric V(IV) complex (Me4N)2[V(O)(pinF)2] (1) and dimeric (µ-O)2-bridged V(V) complex (Me4N)2[V2(O)2(µ-O)2(pinF)2] (3a) are prepared in water under ambient conditions. Monomeric V(V) complex (Me4N)[V(O)(pinF)2] (2) may be generated via chemical oxidation of 1 under an inert atmosphere, but dimerizes to 3a upon exposure to air. Complexes 1 and 2 display a perfectly reversible VIV/V couple at 20 mV (vs Ag/AgNO3), whereas a quasi-reversible VIV/V couple at -865 mV is found for 3a. Stoichiometric reactions of 3a with both fluorenol and TEMPOH result in the formation of (Me4N)2[V2(O)2(µ-OH)2(pinF)2] (4a), which contains two V(IV) centers that display antiferromagnetic coupling. In order to structurally characterize the dinuclear anion of 4a, {K(18C6)}+ countercations were employed, which formed stabilizing K···O interactions between the counterion and each terminal oxo moiety and H-bonding between the oxygen atoms of the crown ether and µ-OH bridges of the dimer, resulting in {K(18C6)}2[V2(O)2(µ-OH)2(pinF)2] (4b). The formal storage of H2 in 4a is reversible and proton-coupled electron transfer (PCET) from crystals of 4a regenerates 3a upon exposure to air over the course of several days. Furthermore, the reaction of 3a (2%) under ambient conditions with excess fluorenol, cinnamyl alcohol, or benzyl alcohol resulted in the selective formation of fluorenone (82% conversion), cinnamaldehyde (40%), or benzaldehyde (7%), respectively, reproducing oxidative alcohol dehydrogenation (OAD) chemistry known for VOx surfaces and demonstrating, in air, the thermodynamically challenging selective oxidation of alcohols to aldehydes/ketones.

5.
Chem Commun (Camb) ; 54(85): 12045-12048, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30294742

ABSTRACT

Oxidation of distorted square-planar perfluoropinacolate Co compound [CoII(pinF)2]2-, 1, to [CoIII(pinF)2]1-, 2, is reported. Rigidly square-planar 2 has an intermediate-spin, S = 1, ground state and very large zero-field splitting (ZFS) with D = 67.2 cm-1; |E| = 18.0 cm-1, (E/D = 0.27), g⊥ = 2.10, g‖ = 2.25 and χTIP = 1950 × 10-6 cm3 mol-1. This Co(iii) species, 2, reacts with ROS to oxidise two (pinF)2- ligands to form tetrahedral [CoII(Hpfa)4]2-, 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...