Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 14(12): 3395-3425, 2019 12.
Article in English | MEDLINE | ID: mdl-31705125

ABSTRACT

The extracellular matrix (ECM) is a major regulator of homeostasis and disease, yet the 3D structure of the ECM remains poorly understood because of limitations in ECM visualization. We recently developed an ECM-specialized method termed in situ decellularization of tissues (ISDoT) to isolate native 3D ECM scaffolds from whole organs in which ECM structure and composition are preserved. Here, we present detailed surgical instructions to facilitate decellularization of 33 different mouse tissues and details of validated antibodies that enable the visualization of 35 mouse ECM proteins. Through mapping of these ECM proteins, the structure of the ECM can be determined and tissue structures visualized in detail. In this study, perfusion decellularization is presented for bones, skeletal muscle, tongue, salivary glands, stomach, duodenum, jejunum/ileum, large intestines, mesentery, liver, gallbladder, pancreas, trachea, bronchi, lungs, kidneys, urinary bladder, ovaries, uterine horn, cervix, adrenal gland, heart, arteries, veins, capillaries, lymph nodes, spleen, peripheral nerves, eye, outer ear, mammary glands, skin, and subcutaneous tissue. Decellularization, immunostaining, and imaging take 4-5 d.


Subject(s)
Extracellular Matrix/metabolism , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Animals , Antibodies/metabolism , Extracellular Matrix/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Specificity , Perfusion/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...