Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267600

ABSTRACT

AIMThe CoKids study aimed to estimate the community incidence of symptomatic and asymptomatic SARS-CoV-2 in children and parents and to assess the symptomatology of SARS-COV-2 infections relative to SARS-CoV-2 negative respiratory episodes. METHODSIn this prospective study, households with at least one child <18 years were recruited from three existing Dutch cohorts. Participation included SARS-CoV-2 screening at 4-6 weeks intervals for all household members during 23 weeks of follow-up and active reporting of new onset respiratory symptoms until July 1st 2021. Follow-up was temporarily intensified following new onset respiratory symptoms in a household member or a SARS-CoV-2 positive screening test and included daily symptom recording, repeated PCR testing (nose-throat, saliva and fecal samples) and SARS-CoV-2 antibody measurement (paired dried blood spots) in all household members. Age-stratified incidence rates for SARS-CoV-2 positive and negative episodes were calculated. Symptomatology and disease burden of respiratory episodes were compared by SARS-CoV-2 status and age. RESULTSIn total 307 households were enrolled including 1209 subjects. We detected 64 SARS-CoV-2 positive and 118 SARS-CoV-2 negative respiratory outbreaks. The highest incidence rate was found in children <12 years for SARS-CoV-2 negative episodes (0.93/ person-year (PY); 95%CI: 0.88-0.96). The SARS-CoV-2 incidence in this age-group was 0.21/PY for confirmed only, and 0.41/PY if probable cases were included. SARS-CoV-2 incidence did not differ by age group (p>0.27). Nasal congestion/runny nose, with or without cough and fatigue were the three most prevalent symptom clusters for both SARS-CoV-2 positive and negative respiratory episodes. Among children, no differences were observed in the symptomatology and severity of SARS-CoV-2 positive versus negative respiratory episodes, whereas among adults, SARS-CoV-2 positive episodes had a higher number and severity of symptoms and with a longer duration p<0.001). CONCLUSIONUsing active, longitudinal household follow up, we detected a high incidence rate of SARS-CoV-2 infections in children that was similar to adults. The findings suggest that after 20 months of COVID-19 pandemic, up to 2/3 of Dutch children < 12 years have been infected with SARS-CoV-2. Symptomatology and disease severity of SARS-CoV-2 in children is similar to respiratory illness from other causes. In adults, SARS-COV-2 positive episodes are characterized by more and prolonged symptoms, and higher severity. These findings may assist decisions on COVID-19 policies targeting children.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21249691

ABSTRACT

ObjectiveTo describe the SARS-CoV-2 viral load distribution in different patient groups and age categories. MethodsAll SARS-CoV-2 RT-PCR results from nasopharyngeal (NP) and oropharyngeal (OP) swabs (first PCR from unique patients only) that were collected between January 1 and December 1, 2020, predominantly in the Public Health Services regions Kennemerland and Hollands Noorden, province of North Holland, the Netherlands were included in this study. Swabs were derived from patients with respiratory symptoms who were presented at the general practitioner (GP), hospital, or hospital health care workers (HCWs) of four regional hospitals, nursing home residents and HCWs of multiple nursing homes, and in majority (>75%) from Public Health testing facilities of the two Public Health Services. SARS-CoV-2 PCR crossing point (Cp) values were used to estimate viral loads (higher Cp-values indicate lower viral loads). ResultsIn total, 278.455 unique patients were tested of whom 9{middle dot}1% (n=25.374) were SARS-CoV-2 positive. As there were differences in viral load distribution between tested populations, further analyses focused on PCRs performed by public health services (n=211.914) where sampling and inclusion were uniform. These data reveal a clear relation between age and SARS-CoV-2 viral load, with especially children aged<12 years showing lower viral loads than shown in adults ({beta}: -0{middle dot}03, 95CI% -0{middle dot}03 to -0{middle dot}02, p<0{middle dot}001), independent of sex and/or symptom duration. Interestingly, the median Cp-values between the oldest (>79 years) and youngest (<12 years) population differed by over 4 PCR cycles, suggesting approximately a 16-fold difference in viral load. In addition, the proportion of children aged <12 years with a low load (Cp-value >30) was significantly higher compared to the other patients (31{middle dot}1% vs. 17{middle dot}2%, p-value<0.001). ConclusionWe observed that in patients tested by Public Health Services, SARS-CoV2 viral load increases significantly with age. Previous studies suggest that young children (<12 years) play a limited role in SARS-CoV-2 transmission. Currently, the relation between viral load and infectivity is not yet well understood, and further studies should elucidate whether the lower viral load in children is indeed related to their suggested limited role in SARS-CoV-2 transmission. Moreover, as rapid antigen tests are less sensitive than PCR, these results suggest that SARS-CoV-2 antigen tests could have lower sensitivity in children than in adults.

SELECTION OF CITATIONS
SEARCH DETAIL
...