Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomol NMR Assign ; 9(1): 37-42, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24452424

ABSTRACT

Eukaryotic translation termination is mediated by two interacting release factors, eukaryotic class 1 release factor (eRF1) and eukaryotic class 3 release factor (eRF3), which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. eRF1 consisting of three well-defined functional domains recognizes all three mRNA stop codons located in the A site of the small ribosomal subunit and triggers hydrolysis of the ester bond of peptidyl-tRNA in the peptidyl transfer center of the large ribosomal subunit. Nevertheless, various aspects of molecular mechanism of translation termination in eukaryotes remain unclear. Elucidation of the structure and dynamics of eRF1 in solution is essential for understanding molecular mechanism of its function in translation termination. To approach this problem, here we report NMR backbone signal assignments of the human eRF1 (437 a.a., 50 kDa).


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Peptide Termination Factors/chemistry , Amino Acid Sequence , Humans , Molecular Sequence Data , Protein Structure, Tertiary
2.
Protein Sci ; 21(6): 896-903, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22517631

ABSTRACT

The high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different. Analysis of the NMR relaxation data reveals that most of the regions with the highest structural discrepancy between the solution and solid states undergo internal motions on the ps-ns and ms time scales. The NMR data show that the N-domain of human eRF1 exists in two conformational states. The distribution of the residues having the largest chemical shift differences between the two forms indicates that helices α2 and α3, with the NIKS loop between them, can switch their orientation relative to the ß-core of the protein. Such structural plasticity may be essential for stop codon recognition by human eRF1.


Subject(s)
Peptide Termination Factors/chemistry , Codon, Terminator , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary
3.
J Biol Chem ; 280(16): 16151-6, 2005 Apr 22.
Article in English | MEDLINE | ID: mdl-15718233

ABSTRACT

Analysis of the structures of two complexes of 5 S rRNA with homologous ribosomal proteins, Escherichia coli L25 and Thermus thermophilus TL5, revealed that amino acid residues interacting with RNA can be divided into two different groups. The first group consists of non-conserved residues, which form intermolecular hydrogen bonds accessible to solvent. The second group, comprised of strongly conserved residues, form intermolecular hydrogen bonds that are shielded from solvent. Site-directed mutagenesis was used to introduce mutations into the RNA-binding site of protein TL5. We found that replacement of residues of the first group does not influence the stability of the TL5.5 S rRNA complex, whereas replacement of residues of the second group leads to destabilization or disruption of the complex. Stereochemical analysis shows that the replacements of residues of the second group always create complexes with uncompensated losses of intermolecular hydrogen bonds. We suggest that these shielded intermolecular hydrogen bonds are responsible for the recognition between the protein and RNA.


Subject(s)
Bacterial Proteins/metabolism , RNA, Ribosomal, 5S/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Bacterial Proteins/genetics , Escherichia coli/metabolism , Hydrogen Bonding , Nucleic Acid Conformation , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...