Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(14): 6423-6435, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38506269

ABSTRACT

Combining the experimental techniques of high-resolution X-ray diffraction, magnetometry, specific heat measurement, and X-ray photoelectron, Raman and dielectric spectroscopy techniques, we have studied the influence of La and Cr doping on the crystal structure and magnetism of the room temperature Aurivillius multiferroic Bi5Ti3FeO15 by investigating the physical properties of (Bi4La)Ti3FeO15 and Bi5Ti3 (Fe0.5Cr0.5)O15. The parent (Bi5Ti3FeO15) and the doped ((Bi4La)Ti3FeO15 and Bi5Ti3(Fe0.5Cr0.5)O15) compounds crystallize in the A21am space group, which is confirmed through our analysis of high-resolution synchrotron X-ray diffraction data obtained on phase-pure polycrystalline powders. We determined the oxidation states of the metal atoms in the studied compounds as Fe3+, Ti4+, Cr3+, and La3+ through the analysis of X-ray photoelectron spectroscopy data. The magnetic susceptibilities of the three compounds are marked by the absence of a long-range ordered ground state, but dominated by superparamagnetic clusters with dominant antiferromagnetic interactions. This signature of short-range magnetism is also seen in specific heat as a low temperature enhancement which is suppressed upon the application of external magnetic fields up to 8 T. Our dielectric spectroscopy experiments showed that the three studied compounds display similar features in the dielectric constant measured as a function of frequency. However, upon doping La at the Bi site, the width of the ferroelectric hysteresis loop increases for (Bi4La)Ti3FeO15 compared to that of the parent compound Bi5Ti3FeO15, and with Cr doping, Bi5Ti3(Fe0.5Cr0.5)O15 becomes a leaky dielectric. The resilience of the Aurivillius crystal structure towards doping of La at the Bi site and Cr at the Fe site is clearly seen in the bulk properties of magnetic susceptibility, specific heat and the average crystal structure. The relevance of changes in the local structure is evident from our Raman spectroscopy and X-ray pair distribution function studies.

2.
J Phys Condens Matter ; 35(50)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37683676

ABSTRACT

The critical behavior at the ferromagnetic to paramagnetic phase transition of a Griffiths ferromagnet, Ho2NiMnO6, is studied using modified Arrott plot, Kouvel-Fisher, and critical isotherm analysis. Here, we report a second-order phase transition and conclude from the estimated critical exponents that it is unusual and do not belong to conventional universality classes. However, they obey scaling relationships, which indicates the renormalization of interactions around the phase transition temperature. The presence of Griffiths phase in the system accounts for the unusual critical exponents observed.

3.
Chem Commun (Camb) ; 55(65): 9610-9613, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31317974

ABSTRACT

Traditionally, lead and heavy metal containing inorganic oxides dominate the area of ferroelectricity. Although, recently, lightweight non-toxic organic ferroelectrics have emerged as excellent alternatives, achieving higher temperature up to which the ferroelectric phase can persist has remained a challenge. Moreover, only a few of those are single-component molecular ferroelectrics and were discovered upon revisiting their crystal structures. Here we report a novel phenanthroimidazole derivative, which not only displays notable spontaneous and highly stable remnant polarizations with a low coercive field but also retains its ferroelectric phase up to a record-high temperature of ∼521 K. Subsequently, the crystal undergoes phase transition to form non-polar and centrosymmetric polymorphs, the first study of its kind in a single-component ferroelectric crystal. Moreover, the compound exhibits a significantly high thermal stability. Given the excellent figures-of-merit for ferroelectricity, this material is likely to find potential applications in microelectronic devices pertaining to non-volatile memory.

4.
J Phys Condens Matter ; 30(43): 435603, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30215386

ABSTRACT

The electronic structure of double perovskite Pr2MnNiO6 was studied using core x-ray photoelectron spectroscopy and x-ray absorption spectroscopy. The 2p x-ray absorption spectra show that Mn and Ni are in 4+ and 2+ states respectively. Based on charge transfer multiplet analysis of the 2p XPS spectra of both ions, we find charge transfer energies [Formula: see text] of 3.5 and 2.5 eV for Ni and Mn respectively. The ground state of Ni2+ and Mn4+ ions reveal a higher d electron count of 8.21 and 3.38 respectively as compared to the ionic values. The partial density of states clearly show a charge transfer character of the system for U - J [Formula: see text] 2 eV. The O 1s edge absorption spectra reveal a band gap of 0.9 eV, which is close to the value estimated from analysis of Ni and Mn 2p photoemission and absorption spectra. The combined analysis of nature of spectroscopic data and first principles calculations reveal that the material is a p - d type charge transfer insulator with an intermediate covalent character according to the Zannen-Sawatzy-Allen phase diagram.

5.
J Phys Condens Matter ; 30(31): 315801, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-29893716

ABSTRACT

The emergence of exchange bias effect in Fe3O4 thin films has been since attributed to the presence of anti phase boundary (APB) growth defects despite lack of direct experimental evidence. In the present report, APB induced anomalous weak ferromagnetism and exchange bias property of single-phase antiferromagnetic (AFM) system LuMn0.5Fe0.5O3 (LMFO) is discussed and 57Fe Mössbauer spectroscopy and high resolution transmission electron microscopy (HRTEM) measurements are used to probe the origin of the observed effect. In addition to the sextet component corresponding to the long range AFM ordering, the measured Mössbauer spectra reveal the presence of a small component (10%-12%) near zero velocity with unusually small internal field. This indicates the presence of APB defects. From micro structural investigations using HRTEM, presence of APB type defects and dislocations are confirmed. In addition to the exchange bias effect, upon field cooling, hysteresis loop exhibits large vertical shift due to strong pinning effect of the APB. Finally we further annealed the optimally sintered sample LMFO and studied the evolution of defects, and their influence on weak ferromagnetism and exchange bias properties. Our present experimental findings may pave the way in creating new functionalities in materials using APB-type growth defects.

6.
J Phys Condens Matter ; 29(2): 025804, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27842004

ABSTRACT

Magnetic and dielectric properties of the double perovskite Ho2NiMnO6 are reported. The compound is synthesized by nitrate route and is found to crystallize in monoclinic P21/n space group. Lattice parameters obtained by refining powder x-ray diffraction data are; a = 5.218(2) Å, b = 5.543(2) Å, c = 7.480(3) Å and the monoclinic angle is [Formula: see text](4). A phase transition is observed at [Formula: see text] K in the temperature-dependent magnetization curve, M(T). The inverse magnetic susceptibility, (1/[Formula: see text]) fits reasonably well with modified Curie-Weiss law by incorporating the paramagnetic response of Ho3+. 1/[Formula: see text] manifests as an upward deviation from ideal Curie-Weiss behaviour well above the ferromagnetic transition. Signs of inherent Griffiths phase pertaining to the Ni/Mn subsystem are visible when one subtracts the Ho3+ paramagnetic contribution from total susceptibility and does the power-law analysis. The magnetic hysteresis at 2 K gives the maximum value of magnetization [Formula: see text] [Formula: see text]/f.u. at 50 kOe. Field-derivative of magnetization at 2 K shows discontinuities which indicates the existence of metamagnetic transitions in this compound. This needs to be probed further. Out of the two dielectric relaxations observed, the one at low temperature may be attributed to phononic frequencies and that at higher temperature may be due to Maxwell-Wagner relaxation. A correlation between magnetic and lattice degrees of freedom is plausible since the anomaly in dielectric constant coincides with T C.

7.
Phys Chem Chem Phys ; 18(7): 5316-23, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26817614

ABSTRACT

We have carried out dielectric and transport measurements in NdFe1-xMnxO3 (0 ≤ x ≤ 1) series of compounds and studied the variation of activation energy due to a change in Mn concentration. Despite similar ionic radii in Mn(3+) and Fe(3+), large variation is observed in the lattice parameters and a crossover from dynamic to static Jahn-Teller distortion is discernible. The Fe/Mn-O-Fe/Mn bond angle on the ab plane shows an anomalous change with doping. With an increase in the Mn content, the bond angle decreases until x = 0.6; beyond this, it starts rising until x = 0.8 and again falls after that. A similar trend is observed in activation energies estimated from both transport and dielectric relaxation by assuming a small polaron hopping (SPH) model. Impedance spectroscopy measurements delineate grain and grain boundary contributions separately both of which follow the SPH model. Frequency variation of the dielectric constant is in agreement with the modified Debye law from which relaxation dispersion is estimated.

8.
ACS Nano ; 9(12): 12529-36, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26549529

ABSTRACT

Slow intrinsic fluctuations of resistance, also known as the flicker noise or 1/f-noise, in the surface transport of strong topological insulators (TIs) is a poorly understood phenomenon. Here, we have systematically explored the 1/f-noise in field-effect transistors (FET) of mechanically exfoliated Bi1.6Sb0.4Te2Se TI films when transport occurs predominantly via the surface states. We find that the slow kinetics of the charge disorder within the bulk of the TI induces mobility fluctuations at the surface, providing a new source of intrinsic 1/f-noise that is unique to bulk TI systems. At small channel thickness, the noise magnitude can be extremely small, corresponding to the phenomenological Hooge parameter γH as low as ≈10(-4), but it increases rapidly when channel thickness exceeds ∼1 µm. From the temperature (T)-dependence of noise, which displayed sharp peaks at characteristic values of T, we identified generation-recombination processes from interband transitions within the TI bulk as the dominant source of the mobility fluctuations in surface transport. Our experiment not only establishes an intrinsic microscopic origin of noise in TI surface channels, but also reveals a unique spectroscopic information on the impurity bands that can be useful in bulk TI systems in general.

9.
J Phys Condens Matter ; 27(20): 205702, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25950464

ABSTRACT

We investigated the evolution of the temperature-composition phase diagram of Fe(1+y)Te upon Se substitution. In particular, the effect of Se substitution on the two-step, coupled magneto-structural transition in Fe(1+y)Te single crystals is investigated. To this end, the nominal Fe excess was kept at y = 0.12. For low Se concentrations, the two magneto-structural transitions displayed a tendency to merge. In spite of the high Fe-content, superconductivity emerges for Se concentrations x ⩾ 0.1. We present a temperature-composition phase diagram to demonstrate the interplay of structure, magnetism and superconductivity in these ternary Fe-chalcogenides.

10.
Phys Chem Chem Phys ; 17(18): 12207-14, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25892296

ABSTRACT

Temperature-dependent Raman and dielectric measurements have been carried out on (C2H5NH3)2CdCl4 single crystals. Raman studies reveal the presence of two structural phase transitions below room temperature at 216 K and 114 K. The phase transitions are marked by anomalies in temperature dependence of wave-number and full width half maximum (FWHM) of several vibrational modes. The transitions are also accompanied by anomalies in dielectric measurements. Raman and dielectric data indicate that the transition at 216 K is order-disorder in nature and is driven by re-orientation of organic ions, while the transition at 114 K is due to coupling between the CdCl6 octahedron and the organic chain. Further high temperature dielectric measurements reveal the presence of one more structural phase transition around 473 K across which dispersion in dielectric parameters is observed. The activation energies and relaxation time obtained for high temperature dielectric phases are characteristic of combined reorientation motions of alkyl ammonium cations.

11.
J Phys Condens Matter ; 26(1): 016002, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24275331

ABSTRACT

It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.


Subject(s)
Cobalt/chemistry , Glass/chemistry , Lanthanum/chemistry , Magnetic Phenomena , Magnets/chemistry , Neutrons , Oxides/chemistry , Strontium/chemistry , Models, Chemical , Phase Transition
12.
J Phys Condens Matter ; 22(2): 026005, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-21386269

ABSTRACT

Gadolinium strontium manganite single crystals of the composition Gd(0.5)Sr(0.5)MnO(3) were grown using the optical float zone method. We report here the magnetic and magnetotransport properties of these crystals. A large magnetoresistance ∼10(9)% was observed at 45 K under the application of a 110 kOe field. We have observed notable thermomagnetic anomalies such as open hysteresis loops across the broadened first-order transition between the charge order insulator and the ferromagnetic metallic phase while traversing the magnetic field-temperature (H-T) plane isothermally or isomagnetically. In order to discern the cause of these observed anomalies, the H-T phase diagram for Gd(0.5)Sr(0.5)MnO(3) is formulated using the magnetization-field (M-H), magnetization-temperature (M-T) and resistance-temperature (R-T) measurements. The temperature dependence of the critical field (i.e. H(up), the field required for transformation to the ferromagnetic metallic phase) is non-monotonic. We note that the non-monotonic variation of the supercooling limit is anomalous according to the classical concepts of the first-order phase transition. Accordingly, H(up) values below ∼20 K are unsuitable to represent the supercooling limit. It is possible that the nature of the metastable states responsible for the observed open hysteresis loops is different from that of the supercooled ones.

13.
J Phys Condens Matter ; 22(34): 346002, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-21403267

ABSTRACT

We have performed a series of magnetic aging experiments on single crystals of Dy(0.5)Sr(0.5)MnO(3). The results demonstrate striking memory and chaos-like effects in this insulating half-doped perovskite manganite and suggest the existence of strong magnetic relaxation mechanisms of a clustered magnetic state. The spin-glass-like state established below a temperature T(sg)≈ 34 K originates from quenched disorder arising due to the ionic-radii mismatch at the rare earth site. However, deviations from the typical behavior seen in canonical spin glass materials are observed which indicate that the glassy magnetic properties are due to cooperative and frustrated dynamics in a heterogeneous or clustered magnetic state. In particular, the microscopic spin flip time obtained from dynamical scaling near the spin glass freezing temperature is four orders of magnitude larger than microscopic times found in atomic spin glasses. The magnetic viscosity deduced from the time dependence of the zero-field-cooled magnetization exhibits a peak at a temperature T < T(sg) and displays a marked dependence on waiting time in zero field.

14.
Rev Sci Instrum ; 80(1): 013908, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19191448

ABSTRACT

The design and fabrication of a state of the art high temperature top seeded solution growth (HTTSSG) unit with seed and crucible rotation options is discussed. Crystals from solid solutions of high viscosity could be grown using the setup. The fabricated setup is used to grow high optical quality single crystals of cesium lithium borate with dimensions 50x40x40 mm(3) for frequency conversion of ir to UV laser through harmonic generation.

15.
J Phys Condens Matter ; 21(9): 096002, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-21817408

ABSTRACT

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO(3) single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO(3) shows magnetic ordering of Mn(3+) (S = 2) spins on a triangular Mn lattice at T(N)(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy(3+) (S = 9/2) spins. At T(N)(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO(3) display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn(3+) spins at T(N)(Mn) = 39 K, a lock-in transition at T(lock-in) = 16 K and a second antiferromagnetic transition at T(N)(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

16.
J Chem Phys ; 128(24): 244709, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18601367

ABSTRACT

Near-stoichiometric lithium niobate (SLN) crystals doped with up to 1.6 mol % Zn and codoped with various Nd concentrations in the melt (0.2, 0.5, 0.9, and 1.5 mol %) (Nd:Zn:SLN) are grown from 58.6 mol % Li(2)O using conventional Czochralski technique. Crystals are pulled at the rate of 0.35 mmh with seed rotation at 9 rpm. Concentrations of Zn and Nd in the crystal are varied by adding appropriate amounts of ZnO and Nd(2)O(3) to the starting composition. Unit cell parameters of the grown crystals are calculated by Rietveld refinement method using FULLPROFF software. Domain structure studies are carried out by chemical etching followed by microscopic examination. Dielectric studies reveal the existence of piezoelectric resonance at high frequencies. Enhancement in dielectric constant and tan delta in Nd doped samples has been attributed to the space charge polarization. Nd doped samples exhibit reduction in the relative permittivity after oxygen annealing. Transmission spectra of Nd:Zn:SLN crystals in the UV region exhibit blueshift in the cutoff wavelength. In Mid Infrared (MIR) region crystals doped with 1.6 mol % Zn have shift in the OH absorption peak from 2873 to 2833 nm. Judd-Ofelt analysis carried out on the absorption spectra of codoped crystal yields the lifetime of 104 mus for the metastable state (4)F(32). The branching ratio for the electronic transition from (4)F(32) to (4)I(112) is high compared to that for (4)F(32) to (4)I(132), indicating a higher emission cross section for the former transition. Laser damage threshold evaluated using 532 nm, 5 ns pulsed neodymium doped yttrium aluminum garnet laser, shows an increase by two orders of magnitude for crystals doped with 1.6 mol % Zn. Photorefractive damage threshold for these crystals shows an enhancement of four orders of magnitude due to increase in the photoconductivity.

17.
J Phys Condens Matter ; 20(27): 275234, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-21694395

ABSTRACT

Single crystals of Dy(0.5)Sr(0.5)MnO(3) are grown using the optical floating zone technique, and their structural, magnetic, transport and thermal properties have been investigated. Magnetization measurements under field-cooled and zero-field-cooled conditions display irreversibility below 35 K. The magnetization does not saturate up to fields of 5 T in the temperature range 5-350 K. AC susceptibility shows a cusp around 32 K that shifts to higher temperature with increasing frequency. This frequency dependence of the peak temperature follows a critical slowing down with exponent zν = 3.6. Electrical resistivity shows insulating behavior, and the application of magnetic fields up to 10 T does not change this qualitative behavior. However, a marked negative magnetoresistance is observed in the paramagnetic phase reaching 80% at 70 K and 10 T. The observed resistivity behavior does not obey an activated type of conduction. These features are characteristic of spin-glass behavior in this half-doped insulating manganite. It is argued that the spin-glass-like state originates from the A-site disorder, which in turn results from the random distribution of cations with different ionic radii. Specific-heat measurements reveal a sizable linear contribution at low temperature that may be associated with the glassy magnetic ordering and a Schottky-like anomaly in a wide temperature range between 8 and 40 K. The distribution of Schottky levels is explained by the inhomogeneity of the molecular field in the spin-glass state that leads to variable splitting of the Kramers ground-state doublets in Dy(3+).

SELECTION OF CITATIONS
SEARCH DETAIL
...