Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 7571208, 2022.
Article in English | MEDLINE | ID: mdl-35814562

ABSTRACT

Brain-computer interfaces are systems capable of mapping brain activity to specific commands, which enables to remotely automate different types of processes in hardware devices or software applications. However, the development of brain-computer interfaces has been limited by several factors that affect their performance, such as the characterization of events in brain signals and the excessive processing load generated by the high volume of data. In this paper, we propose a method based on computational intelligence techniques to handle these problems, turning them into a single optimization problem. An artificial neural network is used as a classifier for event detection, along with an evolutionary algorithm to find the optimal subset of electrodes and data points that better represents the target event. The obtained results indicate our approach is a competitive and viable alternative for feature extraction in electroencephalograms, leading to high accuracy values and allowing the reduction of a significant amount of data.


Subject(s)
Brain-Computer Interfaces , Algorithms , Brain , Electroencephalography/methods , Neural Networks, Computer , Signal Processing, Computer-Assisted
2.
Sci Rep ; 12(1): 4868, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35318341

ABSTRACT

A practical solution to the problems caused by the water, air, and soil pollution produced by the large volumes of waste is recycling. Plastic and glass bottle recycling is a practical solution but sometimes unfeasible in underdeveloped countries. In this paper, we propose a high-performance real-time hardware architecture for bottle classification, that process input image bottles to generate a bottle color as output. The proposed architecture was implemented on a Spartan-6 Field Programmable Gate Array, using a Hardware Description Language. The proposed system was tested for several input resolutions up to 1080 p, but it is flexible enough to support input video resolutions up to 8 K. There is no evidence of a high-performance bottle classification system in the state-of-the-art. The main contribution of this paper is the implementation and integration of a set of dedicated image processing blocks in a high-performance real-time bottle classification system. These hardware modules were integrated into a compact and tunable architecture, and was tested in a simulated environment. Concerning the image processing algorithm implemented in the FPGA, the maximum processing rate is 60 frames per second. In practice, the maximum number of bottles that can be processed would be limited by the mechanical aspects of the bottle transportation system.

SELECTION OF CITATIONS
SEARCH DETAIL
...