Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 854348, 2022.
Article in English | MEDLINE | ID: mdl-35516441

ABSTRACT

Bovine rotavirus (BRV) causes massive economic losses in the livestock industry worldwide. Elucidating the pathogenesis of BRV would help in the development of more effective measures to control BRV infection. The MA-104 cell line is sensitive to BRV and is thereby a convenient tool for determining BRV-host interactions. Thus far, the role of the microRNAs (miRNAs) of MA-104 cells during BRV infection is still ambiguous. We performed Illumina RNA sequencing analysis of the miRNA libraries of BRV-infected and mock-infected MA-104 cells at different time points: at 0 h post-infection (hpi) (just after 90 min of adsorption) and at 6, 12, 24, 36, and 48 hpi. The total clean reads obtained from BRV-infected and uninfected cells were 74,701,041 and 74,184,124, respectively. Based on these, 579 were categorized as known miRNAs and 144 as novel miRNAs. One hundred and sixty differentially expressed (DE) miRNAs in BRV-infected cells in comparison with uninfected MA-104 cells were successfully investigated, 95 of which were upregulated and 65 were downregulated. The target messenger RNAs (mRNAs) of the DE miRNAs were examined by bioinformatics analysis. Functional annotation of the target genes with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) suggested that these genes mainly contributed to biological pathways, endocytosis, apoptotic process, trans-Golgi membrane, and lysosome. Pathways such as the mammalian target of rapamycin (mTOR) (mml-miR-486-3p and mml-miR-197-3p), nuclear factor kappa B (NF-κB) (mml-miR-204-3p and novel_366), Rap1 (mml-miR-127-3p), cAMP (mml-miR-106b-3p), mitogen-activated protein kinase (MAPK) (mml-miR-342-5p), T-cell receptor signaling (mml-miR-369-5p), RIG-I-like receptor signaling (mml-miR-504-5p), AMP-activated protein kinase (AMPK) (mml-miR-365-1-5p), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling (mml-miR-299-3p) were enriched. Moreover, real-time quantitative PCR (qPCR) verified the expression profiles of 23 selected DE miRNAs, which were consistent with the results of deep sequencing, and the 28 corresponding target mRNAs were mainly of regulatory pathways of the cellular machinery and immune importance, according to the bioinformatics analysis. Our study is the first to report a novel approach that uncovers the impact of BRV infection on the miRNA expressions of MA-104 cells, and it offers clues for identifying potential candidates for antiviral or vaccine strategies.

2.
Infect Genet Evol ; 89: 104715, 2021 04.
Article in English | MEDLINE | ID: mdl-33434703

ABSTRACT

Rotaviruses (RVs) account for severe diarrhea in children and young animals globally. In the current study, the fecal samples of diarrheic calves from a beef farm in Inner Mongolia were screened for RVA by ELISA and RT-PCR, followed by culture of three positive RVA samples in the MA-104 cell line. After 10 blind passages, cytopathic effects (CPE) appeared as detachment, granulation, and clustering of the inoculated cells. The virus isolates were identified by RT-PCR (VP6 gene RVA) and ESI-LC-MS/MS for whole protein sequencing. The protein sequences demonstrated the presence of two strains from species A rotavirus and one RVB strain; RVA/Cow-tc/CHN/35333/2019/G6P[5] was mixed with one RVB strain (RVB/Cow-tc/CHN/35334/2019/G5P[3]) in two samples, and RVA/Cow-tc/CHN/10927/2019/G8P[7] was found in one sample. They are of genotype constellations (G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3), (G8-P[7]-I5-R1-C1- M2-A1-N1-T1-E1-H1), and (G5-P[3]-I3-R5-C5-A5-N4-H5), respectively. Besides, phylogenetic analysis of the obtained sequences demonstrated viral evolution.


Subject(s)
Rotavirus/isolation & purification , Viral Proteins/metabolism , Animals , Cattle , Cell Line , China , Chromatography, Liquid , Macaca mulatta , Rotavirus/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
3.
Fish Shellfish Immunol ; 92: 125-132, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31125665

ABSTRACT

Cytidine/uridine monophosphate kinase 2 (CMPK2) is known as a nucleoside monophosphate kinase in mitochondria to maintains intracellular UTP/CTP, and could be induced by immunostimulants LPS and Poly (I:C) in mammals, suggesting its potential antiviral and antibacterial role. In this study, CMPK2 was cloned and characterized in Fathead minnow (FHM) cells. In vivo analysis of tissue distribution revealed that CMPK2 transcript was detected in all the tissues of zebrafish (Danio rerio) examined in this study, particularly abundant in liver, spleen and kidney. In addition, indirect immunofluorescence showed that CMPK2 was localized in the cytoplasm of FHM cells. Expression of CMPK2 mRNA was significantly up-regulated following challenge with Spring viraemia of carp virus (SVCV), poly(I:C), or zebrafish IFN1 and IFN3 both in vitro and in vivo. Furthermore, overexpression and RNA interference of CMPK2 in SVCV-infected FHM cells showed significantly antiviral effect. In summary, this study for the first time shows the presence and distribution of CMPK2 in different tissues of zebrafish, but also demonstrates its antiviral potential against SVCV infection in vivo. These new findings could contribute to explain the molecular mechanism of the CMPK2 mediated antiviral function.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/immunology , Zebrafish Proteins/genetics , Zebrafish Proteins/immunology , Zebrafish/genetics , Zebrafish/immunology , Amino Acid Sequence , Animals , Gene Expression Profiling/veterinary , Interferons/metabolism , Phylogeny , Rhabdoviridae/physiology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Sequence Alignment/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...