Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4702, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409454

ABSTRACT

This study was divided into two parts. The first part, the determination of methicillin-resistant Staphylococcus aureus (MRSA) prevalence in 25 broiler chicken farms, with the detection of multidrug resistant MRSA strains. The prevalence of MRSA was 31.8% (159 out of 500 samples) at the level of birds and it was 27% (27 out of 100) in the environmental samples. The highest antimicrobial resistance of the recovered MRSA strains was recorded to streptomycin (96%). All isolates (100%) had multidrug resistance (MDR) to four or more antibiotics with 16 distinct antibiotic resistant patterns, and multiple antibiotic resistance index (MARI) of 0.4-1. The second part, implementing novel biocontrol method for the isolated multidrug resistant MRSA strains through the isolation of its specific phage and detection of its survival rate at different pH and temperature degrees and lytic activity with and without encapsulation by chitosan nanoparticles (CS-NPs). Encapsulated and non-encapsulated MRSA phages were characterized using transmission electron microscope (TEM). Encapsulation of MRSA phage with CS-NPs increasing its lytic activity and its resistance to adverse conditions from pH and temperature. The findings of this study suggested that CS-NPs act as a protective barrier for MRSA phage for the control of multidrug resistant MRSA in broiler chicken farms.


Subject(s)
Bacteriophages , Chitosan , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Chitosan/pharmacology , Staphylococcus aureus , Farms , Poultry , Chickens , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary
2.
BMC Microbiol ; 23(1): 146, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217869

ABSTRACT

BACKGROUND: This study aims to achieve biocontrol of multidrug-resistant Listeria monocytogenes in dairy cattle farms which poses a severe threat to our socio-economic balance and healthcare systems. METHODS: Naturally occurring phages from dairy cattle environments were isolated and characterized, and the antimicrobial effect of isolated L. monocytogenes phages (LMPs) against multidrug-resistant L. monocytogenes strains were assessed alone and in conjugation with silver nanoparticles (AgNPs). RESULTS: Six different phenotypic LMPs (LMP1-LMP6) were isolated from silage (n = 4; one by direct phage isolation and three by enrichment method) and manure (n = 2; both by enrichment method) from dairy cattle farms. The isolated phages were categorized into three different families by transmission electron microscopy (TEM): Siphoviridae (LMP1 and LMP5), Myoviridae (LMP2, LMP4, and LMP6), and Podoviridae (LMP3). The host range of the isolated LMPs was determined by the spot method using 22 multidrug-resistant L. monocytogenes strains. All 22 (100%) strains were susceptible to phage infection; 50% (3 out of 6) of the isolated phages showed narrow host ranges, while the other 50% showed moderate host ranges. We found that LMP3 (the phage with the shortest tail) had the ability to infect the widest range of L. monocytogenes strains. Eclipse and latent periods of LMP3 were 5 and 45 min, respectively. The burst size of LMP3 was 25 PFU per infected cell. LMP3 was stable with wide range of pH and temperature. In addition, time-kill curves of LMP3 alone at MOI of 10, 1 and 0.1, AgNPs alone, and LMP3 in combination with AgNPs against the most phage-resistant L. monocytogenes strain (ERIC A) were constructed. Among the five treatments, AgNPs alone had the lowest inhibition activity compared to LMP3 at a multiplicity of infection (MOI) of 0.1, 1, and 10. LMP3 at MOI of 0.1 in conjugation with AgNPs (10 µg/mL) exhibited complete inhibition activity after just 2 h, and the inhibition activity lasted for 24 h treatment. In contrast, the inhibition activity of AgNPs alone and phages alone, even at MOI of 10, stopped. Therefore, the combination of LMP3 and AgNPs enhanced the antimicrobial action and its stability and reduced the required concentrations of LMP3 and AgNPs, which would minimize the development of future resistance. CONCLUSIONS: The results suggested that the combination of LMP3 and AgNPs could be used as a powerful and ecofriendly antibacterial agent in the dairy cattle farm environment to overcome multidrug-resistant L. monocytogenes.


Subject(s)
Bacteriophages , Listeria monocytogenes , Metal Nanoparticles , Animals , Cattle , Farms , Silver/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Environ Sci Pollut Res Int ; 29(36): 54359-54377, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35298798

ABSTRACT

Listeria monocytogenes (L. monocytogenes) is frequently detected in ruminants, especially dairy cattle, and associated with the sporadic and epidemic outbreak of listeriosis in farms. In this epidemiological study, the prevalence, virulence, antibiotic resistance profiles, and genetic diversity of L. monocytogenes in three Egyptian dairy cattle farms were investigated. The risk factors associated with the fecal shedding of L. monocytogenes were analyzed. The L. monocytogenes strains from the three farms were categorized into distinct genotypes based on sampling site and sample type through enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). A total of 1896 samples were collected from animals, environments, and milking equipment in the three farms. Results revealed that 137 (7.23%) of these samples were L. monocytogenes positive. The prevalence of L. monocytogenes in the animal samples was high (32.1%), and the main environmental source of prevalent genotypes in the three farms was silage. For all sample types, L. monocytogenes was more prevalent in farm I than in farms II and III. Risk factor analysis showed seasonal variation in production hygiene. For all sample types, L. monocytogenes was significantly more prevalent in winter than in spring and summer. The level of L. monocytogenes fecal shedding was high likely because of increasing age, number of parities, and milk yield in dairy cattle. Two virulence genes, namely, hlyA & prfA, were also detected in 93 strains, whereas only one of these genes was found in 44 residual strains. Conversely, iap was completely absent in all strains. The strains exhibited phenotypic resistance to most of the tested antibiotics, but none of them was resistant to netilmicin or vancomycin. According to sample type, the strains from the animal samples were extremely resistant to amoxicillin (95.2%, 80/84) and cloxacillin (92.9%, 78/84). By comparison, the strains from the environmental samples were highly resistant to cefotaxime (86.95%, 20/23). Furthermore, 25 multi-antibiotic resistance (MAR) patterns were observed in L. monocytogenes strains. All strains had a MAR index of 0.22-0.78 and harbored antibiotic resistance genes, including extended-spectrum ß-lactamase (blaCTX-M [92.7%] and blaDHA-1 [66.4%]), quinolones (qnrS [91.2%], qnrA [58.4%], parC [58.4%], and qnrB [51%]), macrolides (erm[B] [76.6%], erm(C) [1.5%], and msr(A) [27%]), trimethoprim (dfrD [65.7%]), and tetracyclines (tet(M) [41.6%], tet(S) [8%], and int-Tn [26.3%]). ERIC-PCR confirmed that the strains were genetically diverse and heterogeneous. A total of 137 isolated L. monocytogenes strains were classified into 22 distinct ERIC-PCR groups (A-V). Among them, ERIC E (10.2%) was the most prevalent group. These results indicated that environment and milking equipment served as reservoirs and potential transmission ways of virulent and multidrug-resistant L. monocytogenes to dairy animals, consequently posing threats to public health. Silage is the main environmental source of prevalent genotypes on all three farms. Therefore, hygienic measures at the farm level should be developed and implemented to reduce L. monocytogenes transmission inside dairy cattle farms.


Subject(s)
Listeria monocytogenes , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Egypt , Enterobacteriaceae/genetics , Farms , Genetic Variation , Polymerase Chain Reaction
4.
Vet Res Commun ; 46(2): 363-376, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34755272

ABSTRACT

Florfenicol (FFC) is a synthetic broad-spectrum antibiotic and garlic has a bactericidal action against coliforms. This study was carried out to compare the antimicrobial, immunological and biochemical effects of florfenicol and garlic, for their ability to treat enteropathogenic Escherichia coli serotype O55: H7 infection in rabbits. Four groups (G1-G4) were included. G1 group was the negative control; G2 group was the infected with a field-isolated strain of E. coli and untreated; G3 group was the infected+treated with FFC for 5 days; and G4 group was the infected+treated with garlic tablets for 14 days. The rabbits were observed for clinical signs, growth performance and mortality rates. Garlic-infused disks had a larger clear zone of inhibition than other antibiotic disks. Garlic treatment improved growth performance, biochemical parameters, and immunological response and reduced the fecal shedding and histopathological lesions in E. coli O55: H7 infected rabbits compared to the other groups. Colonization of E. coli more rapidly declined in G3 & G4 than in G2. Hepatic and intestinal gene expressions; tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated in G2 compared to the other groups, and their levels were elevated more in G3 than in G4. Serum interferon-gamma (IFN-γ) and phagocytic activity were significantly elevated in G4 compared to G3. G3 revealed macrocytic hypochromic anaemia that was confirmed histopathologically by moderate haematopoiesis of the bone marrow. In conclusion, garlic powder can reduce rabbit colibacillosis, like FFC, and can enhance the immune status of rabbits.


Subject(s)
Garlic , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antioxidants , Escherichia coli , Garlic/chemistry , Rabbits , Serogroup , Thiamphenicol/analogs & derivatives
5.
Environ Sci Pollut Res Int ; 27(24): 30716-30728, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32468379

ABSTRACT

Recent developments in the nanotechnology field have created opportunities to design new biomaterials for Staphylococcus aureus biofilm eradication. These biomaterials including disinfectant-loaded nanoparticles could overcome the limitations of conventional disinfectants. The objective of this study was to assess the biocidal activity of five commercial disinfectants (DC&R®, VirkonS®, TH4++, Tek-Trol, and peracetic acid) alone and as with silver and copper nanocomposites on S. aureus biofilm at different concentrations and exposure times. Consequently, 227 samples were collected from two broiler farms, two-layer farms, and three abattoirs at El-Dakahlia Province, Egypt, during summer 2018. The samples were collected from birds as well as the surrounding environment. S. aureus strains were isolated and biofilm producers were phenotypically evaluated by Congo red agar (CRA) test. Besides, 4 biofilm-associated genes including bap, fnbA, cna, and ebps were genotypically detected by PCR technology. Out of 227 collected samples, 141 (62.1%) strains were identified as S. aureus, while 127 strains (90.1%) were S. aureus biofilm producers for all examined samples except for hand swabs of abattoir workers. The prevalence of fnbA and bap genes was 79.5% (101/127) and 20.5% (26/127), respectively but, no strains harbored cna or ebps genes. Tested nanocomposites were prepared using an aqueous solution of metal salts such as copper sulfate and silver nitrate and added to the same amount of disinfectant solution. The obtained nanocomposites were characterized by transmission electron microscopy (TEM) and zeta potential which showed spherical and elongated particles and with a surface charge of disinfectants-silver and copper nanocomposites-of 2.92 and 3.43 mV, respectively. Complete eradication of S. aureus biofilm was observed after treatment with disinfectants loaded onto silver (AgNPs) and copper (CuNPs) nanoparticles in varying concentrations as well as at different exposure times in comparing to disinfectants alone. Our results exhibited the potential applications of disinfectant nanocomposites in complete eradication of S. aureus biofilm in farms and abattoirs without developing of disinfectant resistant bacteria.


Subject(s)
Disinfectants , Metal Nanoparticles , Nanoparticles , Abattoirs , Animals , Biofilms , Chickens , Copper , Egypt , Farms , Humans , Poultry , Staphylococcus aureus
6.
Vet Microbiol ; 238: 108429, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31648721

ABSTRACT

Viral haemorrhagic disease (VHD) and colibacillosis are common diseases in rabbits that cause economic losses worldwide. The effect of colibacillosis on the immune response of vaccinated rabbits against rabbit haemorrhagic disease virus (RHDV) was studied. Four groups (G1-G4) were included. G1 was the negative control group; G2 was the RHDV vaccine group; G3 was the E. coli-infected group; and G4 was the E. coli-infected + RHDV vaccine group. The E. coli infection and RHDV vaccination were simultaneously performed, with another previous infection, 3 days before vaccination. At 28 days post-vaccination (PV), the rabbits (G2-G4) were challenged intramuscularly with 0.5 ml of RHDV at a dose of 103 50% median lethal dose (LD50)/rabbit. The rabbits were observed for clinical signs, body weight gain and mortality rates. Tissue, blood, serum, and faecal samples and rectal swabs were collected at 3, 5, 7, 14, 21 and 28 days PV. Significant clinical signs and mortality and a decrease in BW were observed in the infected + RHDV vaccine group. On the 3rd day post-infection (PI), compared with all the other groups, the vaccinated group (G2) had significantly upregulated hepatic tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels; however, the infected + RHDV vaccine group had significantly higher intestinal levels of TNF-α and IL-6 than the other groups. Furthermore, E. coli infection in vaccinated rabbits led to immunosuppression, as shown by significant decreases (P < 0.05) in heterophil phagocytic activity, the CD4+/CD8+ ratio, and HI antibody responses to RHDV and a significant increase in the heterophil to lymphocyte (H/L) ratio. In conclusion, colibacillosis leads to immunosuppression involving a shift in the equilibrium of cytokines and reduced weight gain and mortality in vaccinated rabbits and could be a contributing factor in RHDV vaccination failure in rabbit farming.


Subject(s)
Caliciviridae Infections/veterinary , Escherichia coli Infections/veterinary , Rabbits/immunology , Vaccination/veterinary , Viral Vaccines/immunology , Animals , Caliciviridae Infections/immunology , Caliciviridae Infections/mortality , Cytokines/genetics , Escherichia coli Infections/immunology , Escherichia coli Infections/mortality , Escherichia coli Infections/physiopathology , Gene Expression Regulation/immunology , Hemorrhagic Disease Virus, Rabbit/immunology , Rabbits/microbiology , Rabbits/virology , Vaccination/standards
7.
J Glob Antimicrob Resist ; 14: 202-208, 2018 09.
Article in English | MEDLINE | ID: mdl-29684574

ABSTRACT

OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella.


Subject(s)
Chickens/microbiology , Drug Resistance, Multiple, Bacterial , Integrons , Salmonella/classification , Animals , Azithromycin/pharmacology , Cefuroxime/pharmacology , Ciprofloxacin , DNA, Bacterial/genetics , Disk Diffusion Antimicrobial Tests , Egypt , Phylogeny , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/genetics , Sequence Analysis, DNA , Serogroup , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
8.
Vet World ; 10(10): 1281-1285, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29184377

ABSTRACT

AIM: This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum ß-lactamase (ESBL) encoding genes (blaOXA and blaTEM genes). MATERIALS AND METHODS: A total of 120 frozen chicken meat samples were investigated for isolation of E. coli. All isolates were subjected to biochemical and serological tests. Eight serotypes isolated from samples were analyzed for the presence of various virulence genes (stx1, stx2, and eae A genes) using multiplex polymerase chain reaction (PCR) technique. Moreover, the strains were evaluated for the ESBL encoding genes (blaTEM and blaOXA). RESULTS: Overall, 11.66% (14/120) chicken meat samples carried E. coli according to cultural and biochemical properties. The most predominant serotypes were O78 and O128: H2 (21.5%, each), followed by O121: H7 and O44: H18. Molecular method detected that 2 strains (25%) harbored stx1, 3 strains (37.5%) stx2, and 3 strains (37.5%) both stx1 and stx2, while 1 (12.5%) strain carried eae A gene. Particularly, only O26 serotype had all tested virulence genes (stx1, stx2, and eae A). The results revealed that all examined 8 serotypes were Shiga toxin-producing E. coli (STEC). The ESBL encoding genes (blaTEM and blaOXA) of STEC were detected in 4 (50%) isolates by multiplex PCR. The overall incidence of blaTEM and blaOXA genes was 3 (37.5%) and 2 (25%) isolates. CONCLUSION: The present study indicates the prevalence of virulent and ESBL-producing E. coli in frozen chicken meat intended for hospitalized human consumption due to poor hygienic measures and irregular use of antibiotics. Therefore, the basic instructions regarding good hygienic measures should be adapted to limit public health hazard.

SELECTION OF CITATIONS
SEARCH DETAIL
...