Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 39(11): 289, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37640981

ABSTRACT

Coal fly ash (CFA) is an industrial byproduct produced during the production of electricity in thermal power plants from the burning of pulverized coal. It is considered hazardous due to the presence of toxic heavy metals while it is also considered valuable due to the presence of value-added minerals like silicates, alumina, and iron oxides. Silica nanoparticles' demands and application have increased drastically in the last decade due to their mesoporous nature, high surface area to volume ratio, etc. Here in the present research work, short rod-shaped, mesoporous silica nanoparticles (MSN) have been synthesized from coal fly ash by using Bacillus circulans MTCC 6811 in two steps. Firstly, CFA was kept with the bacterial culture for bioleaching for 25 days in an incubator shaker at 120 rpm. Secondly, the dissolved silica in the medium was precipitated with the 4 M sodium hydroxide to obtain a short rod-shaped MSN. The purification of the synthesized silica particle was done by treating them with 1 M HCl at 120 °C, for 90 min. The synthesized short rod-shaped MSN were characterized by UV-vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Particle size analyzer (PSA), Field emission scanning electron microscopy (FESEM), and transmission electron microscope. The microscopic techniques revealed the short rod-shaped mesoporous silica nanoparticles (MSN) for the final nano-silica, whose size varies from 40 to 80 nm, with an average size of 36 ± 5 nm. The XRD shows the crystalline nature of the synthesized MSN having a crystallite size of 36 nm. The FTIR showed the three characteristic bands in the range of 400-1100 cm-1, indicating the purity of the sample. The energy dispersive X-ray (EDX) showed 53.04 wt% oxygen and 43.42% Si along with 3.54% carbon in the final MSN. The particle size analyzer revealed that the average particle size is 368.7 nm in radius and the polydispersity index (PDI) is 0.667. Such a novel and economical approach could be helpful in the synthesis of silica in high yield with high purity from coal fly ash and other similar waste.


Subject(s)
Bacillus , Industrial Microbiology , Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Silicon Dioxide/economics , Silicon Dioxide/metabolism , Nanoparticles/chemistry , Nanoparticles/economics , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Coal Ash/metabolism , Bacillus/metabolism , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Transmission
2.
Nanomaterials (Basel) ; 12(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807983

ABSTRACT

Persistent organic pollutants (POPs) have become a major global concern due to their large amount of utilization every year and their calcitrant nature. Due to their continuous utilization and calcitrant nature, it has led to several environmental hazards. The conventional approaches are expensive, less efficient, laborious, time-consuming, and expensive. Therefore, here in this review the authors suggest the shortcomings of conventional techniques by using nanoparticles and nanotechnology. Nanotechnology has shown immense potential for the remediation of such POPs within a short period of time with high efficiency. The present review highlights the use of nanoremediation technologies for the removal of POPs with a special focus on nanocatalysis, nanofiltration, and nanoadsorption processes. Nanoparticles such as clays, zinc oxide, iron oxide, aluminum oxide, and their composites have been used widely for the efficient remediation of POPs. Moreover, filtrations such as nanofiltration and ultrafiltration have also shown interest in the remediation of POPs from wastewater. From several pieces of literature, it has been found that nano-based techniques have shown complete removal of POPs from wastewater in comparison to conventional methods, but the cost is one of the major issues when it comes to nano- and ultrafiltration. Future research in nano-based techniques for POP remediation will solve the cost issue and will make it one of the most widely accepted and available techniques. Nano-based processes provide a sustainable solution to the problem of POPs.

3.
Molecules ; 26(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34443398

ABSTRACT

We report in the present study the in situ formation of magnetic nanoparticles (Fe3O4 or Fe) within porous N-doped carbon (Fe3O4/N@C) via simple impregnation, polymerization, and calcination sequentially. The synthesized nanocomposite structural properties were investigated using different techniques showing its good construction. The formed nanocomposite showed a saturation magnetization (Ms) of 23.0 emu g-1 due to the implanted magnetic nanoparticles and high surface area from the porous N-doped carbon. The nanocomposite was formed as graphite-type layers. The well-synthesized nanocomposite showed a high adsorption affinity toward Pb2+ toxic ions. The nanosorbent showed a maximum adsorption capacity of 250.0 mg/g toward the Pb2+ metallic ions at pH of 5.5, initial Pb2+ concentration of 180.0 mg/L, and room temperature. Due to its superparamagnetic characteristics, an external magnet was used for the fast separation of the nanocomposite. This enabled the study of the nanocomposite reusability toward Pb2+ ions, showing good chemical stability even after six cycles. Subsequently, Fe3O4/N@C nanocomposite was shown to have excellent efficiency for the removal of toxic Pb2+ ions from water.

SELECTION OF CITATIONS
SEARCH DETAIL
...