Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 29(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611717

ABSTRACT

In the present work, the synthesis of new ethacrynic acid (EA) derivatives containing nitrogen heterocyclic, urea, or thiourea moieties via efficient and practical synthetic procedures was reported. The synthesised compounds were screened for their anti-proliferative activity against two different cancer cell lines, namely, HL60 (promyelocytic leukaemia) and HCT116 (human colon carcinoma). The results of the in vitro tests reveal that compounds 1-3, 10, 16(a-c), and 17 exhibit potent anti-proliferative activity against the HL60 cell line, with values of the percentage of cell viability ranging from 20 to 35% at 1 µM of the drug and IC50 values between 2.37 µM and 0.86 µM. Compounds 2 and 10 showed a very interesting anti-proliferative activity of 28 and 48% at 1 µM, respectively, against HCT116. Two PyTAP-based fluorescent EA analogues were also synthesised and tested, showing good anti-proliferative activity. A test on the drug-likeness properties in silico of all the synthetised compounds was performed in order to understand the mechanism of action of the most active compounds. A molecular docking study was conducted on two human proteins, namely, glutathione S-transferase P1-1 (pdb:2GSS) and caspase-3 (pdb:4AU8) as target enzymes. The docking results show that compounds 2 and 3 exhibit significant binding modes with these enzymes. This finding provides a potential strategy towards developing anticancer agents, and most of the synthesised and newly designed compounds show good drug-like properties.


Subject(s)
Antineoplastic Agents , Urea , Humans , Thiourea/pharmacology , Ethacrynic Acid , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , HL-60 Cells , Nitrogen
2.
Heliyon ; 10(3): e24551, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318045

ABSTRACT

Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.

3.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257339

ABSTRACT

In this study, using the Comparative Molecular Field Analysis (CoMFA) approach, the structure-activity relationship of 33 small quinoline-based compounds with biological anti-gastric cancer activity in vitro was analyzed in 3D space. Once the 3D geometric and energy structure of the target chemical library has been optimized and their steric and electrostatic molecular field descriptions computed, the ideal 3D-QSAR model is generated and matched using the Partial Least Squares regression (PLS) algorithm. The accuracy, statistical precision, and predictive power of the developed 3D-QSAR model were confirmed by a range of internal and external validations, which were interpreted by robust correlation coefficients (RTrain2=0.931; Qcv2=0.625; RTest2=0.875). After carefully analyzing the contour maps produced by the trained 3D-QSAR model, it was discovered that certain structural characteristics are beneficial for enhancing the anti-gastric cancer properties of Quinoline derivatives. Based on this information, a total of five new quinoline compounds were developed, with their biological activity improved and their drug-like bioavailability measured using POM calculations. To further explore the potential of these compounds, molecular docking and molecular dynamics simulations were performed in an aqueous environment for 100 nanoseconds, specifically targeting serine/threonine protein kinase. Overall, the new findings of this study can serve as a starting point for further experiments with a view to the identification and design of a potential next-generation drug for target therapy against cancer.


Subject(s)
Antineoplastic Agents , Quinolines , Stomach Neoplasms , Humans , Ligands , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Quinolines/pharmacology , Quantitative Structure-Activity Relationship , Stomach Neoplasms/drug therapy
4.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217880

ABSTRACT

Tropomyosin receptor kinase (TRKs) enzymes are responsible for cancers associated with the neurotrophic tyrosine kinase receptor gene fusion and are identified as effective targets for anticancer drug discovery. A series of small-molecule indolin-2-one derivatives showed remarkable biological activity against TRKs enzymatic activity. These small molecules could have an excellent profile for pharmaceutical application in the treatment of cancers caused by TRKs activity. The aim of this study is to modify the structure of these molecules to obtain new molecules with improved TRK inhibitory activity and pharmacokinetic properties favorable to the design of new drugs. Based on these series, we carried out a 3D-QSAR study. As a result, robust and reliable CoMFA and CoMSIA models are developed and applied to the design of 11 new molecules. These new molecules have a biological activity superior to the most active molecule in the starting series. The eleven designed molecules are screened using drug-likeness, ADMET proprieties, molecular docking, and MM-GBSA filters. The results of this screening identified the T1, T3, and T4 molecules as the best candidates for strong inhibition of TRKs enzymatic activity. In addition, molecular dynamics simulations are performed for TRK free and complexed with ligands T1, T3, and T4 to evaluate the stability of ligand-protein complexes over the simulation time. On the other hand, we proposed experimental synthesis routes for these newly designed molecules. Finally, the designed molecules T1, T2, and T3 have great potential to become reliable candidates for the conception of new drug inhibitors of TRKs.Communicated by Ramaswamy H. Sarma.

5.
Nat Prod Res ; : 1-8, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966948

ABSTRACT

The lack of treatments and vaccines effective against SARS-CoV-2 has forced us to explore natural compounds that could potentially inhibit this virus. Additionally, Morocco is renowned for its rich plant diversity and traditional medicinal uses, which inspires us to leverage our cultural heritage and the abundance of natural resources in our country for therapeutic purposes. In this study, an extensive investigation was conducted to gather a collection of phytoconstituents extracted from Moroccan plants, aiming to evaluate their ability to inhibit the proliferation of the SARS-CoV-2 virus. Molecular docking of the studied compounds was performed at the active sites of the main protease (6lu7) and spike (6m0j) proteins to assess their binding affinity to these target proteins. Compounds exhibiting high affinity to the proteins underwent further evaluation based on Lipinski's rule and ADME-Tox analysis to gain insights into their oral bioavailability and safety. The results revealed that the two compounds demonstrated strong binding affinity to the target proteins, making them potential candidates for oral antiviral drugs against SARS-CoV-2. The molecular dynamics results from this computational analysis supported the overall stability of the resulting complex.

6.
Heliyon ; 9(4): e15545, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128337

ABSTRACT

This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.

7.
ACS Omega ; 8(4): 4294-4319, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743017

ABSTRACT

The abnormal expression of the c-Met tyrosine kinase has been linked to the proliferation of several human cancer cell lines, including non-small-cell lung cancer (NSCLC). In this context, the identification of new c-Met inhibitors based on heterocyclic small molecules could pave the way for the development of a new cancer therapeutic pathway. Using multiple linear regression (MLR)-quantitative structure-activity relationship (QSAR) and artificial neural network (ANN)-QSAR modeling techniques, we look at the quantitative relationship between the biological inhibitory activity of 40 small molecules derived from cyclohexane-1,3-dione and their topological, physicochemical, and electronic properties against NSCLC cells. In this regard, screening methods based on QSAR modeling with density-functional theory (DFT) computations, in silico pharmacokinetic/pharmacodynamic (ADME-Tox) modeling, and molecular docking with molecular electrostatic potential (MEP) and molecular mechanics-generalized Born surface area (MM-GBSA) computations were used. Using physicochemical (stretch-bend, hydrogen bond acceptor, Connolly molecular area, polar surface area, total connectivity) and electronic (total energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels) molecular descriptors, compound 6d is identified as the optimal scaffold for drug design based on in silico screening tests. The computer-aided modeling developed in this study allowed us to design, optimize, and screen a new class of 36 small molecules based on cyclohexane-1,3-dione as potential c-Met inhibitors against NSCLC cell growth. The in silico rational drug design approach used in this study led to the identification of nine lead compounds for NSCLC therapy via c-Met protein targeting. Finally, the findings are validated using a 100 ns series of molecular dynamics simulations in an aqueous environment on c-Met free and complexed with samples of the proposed lead compounds and Foretinib drug.

8.
Plant Physiol Biochem ; 196: 695-702, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36809730

ABSTRACT

Recent studies have shown that Cr uses other element transporters such as phosphate transporters to enter cells. The aim of this work is to explore the interaction between dichromate and inorganic phosphate (Pi) in the plant of Vicia faba L. To study this interaction, we used three concentrations of Dipotassium hydrogen phosphate (K2HPO4) 10 mM (Pi10), 50 mM (Pi50) and 100 mM (Pi100) added alone or in combination with potassium dichromate (K2Cr2O7) Cr + Pi10, Cr + Pi50 and Cr + Pi100. In order to investigate the impact of this interaction on morpho-physiological parameters, the biomass, chlorophyll content, proline level, H2O2 level, Catalase and Ascorbate peroxidase activity and Cr-bioaccumulation has been determined. For the molecular scale, the theoretical chemistry was used via molecular docking to explore the various interactions between dichromate Cr2O72-/HPO42-/H2O4P- and the phosphate-transporter. We have selected the eukaryotic phosphate transporter (PDB: 7SP5) as the module. The results showed that K2Cr2O7 negatively affects morpho-physiological parameters and generates oxidative damage (+84% H2O2 than the control), which involved the production of antioxidant enzymes (+147% Catalase and +176% Ascorbate-peroxidase) and Proline (+108%). The addition of Pi improved the growth of Vicia faba L. and induces the partial restoration of the parameters affected by Cr (VI) to the normal levels. Also, it decreased oxidative damage and reduce Cr (VI) bioaccumulation in shoots and roots. Molecular docking has shown that the dichromate structure is more compatible and establishes more bonds with the Pi-transporter which generates a very stable complex compared to HPO42-/H2O4P-. Overall, these results confirmed that there is a strong relationship between dichromate uptake and the Pi-transporter.


Subject(s)
Vicia faba , Catalase/metabolism , Vicia faba/metabolism , Molecular Docking Simulation , Hydrogen Peroxide , Antioxidants/metabolism , Oxidative Stress , Proline
9.
J Biomol Struct Dyn ; 41(16): 7712-7724, 2023.
Article in English | MEDLINE | ID: mdl-36106982

ABSTRACT

FLT3 is considered a potential target of acute myeloid leukemia therapy. In this study, we applied a computer-aided methodology unifying molecular docking and pharmacophore screening to identify potent inhibitors against FLT3. To investigate the pharmacophore area and binding mechanism of FLT3, the reported co-crystallized Gilteritinib ligand was docked into the active site using Glide XP. Based on the docking results, we identified structure-based pharmacophore characteristics resistant to potent FLT3 inhibitors. The best hypothesis was corroborated using test and decoy sets, and the verified hypo was utilized to screen the chemical database. The hits from the pharmacophore-based screening were then screened again using a structure-based method that included molecular docking at various precisions; the selected molecules were further examined and refined using drug-like filters and ADMET analysis. Finally, two hits were picked out for molecular dynamic simulation. The results showed two hits were expected to have potent inhibitory activity and excellent ADMET characteristics, and they might be used as new leads in the development of FLT3 inhibitors.Communicated by Ramaswamy H. Sarma.

10.
J Biomol Struct Dyn ; 41(16): 7768-7785, 2023.
Article in English | MEDLINE | ID: mdl-36120976

ABSTRACT

Small molecules such as 4-phenoxypyridine derivatives have remarkable inhibitory activity against c-Met enzymatic activity and proliferation of cancer cell lines. Since there is a relationship between structure and biological activity of these molecules, these little compounds may have great potential for clinical pharmaceutical use against various types of cancer caused by c-Met activity. The purpose of this study was to remodel the structures of 4-phenoxypyridine derivatives to achieve strong inhibitory activity against c-Met and provide favorable pharmacokinetic properties for drug design and discovery. Therefore, this paper describes the structure-activity relationship and the rationalization of appropriate pharmacophore sites to improve the biological activity of the investigated molecules, based on bioinformatics techniques represented by a computer-aided drug design approach. Accordingly, robust and reliable 3D-QSAR models were developed based on CoMFA and CoMSIA techniques. As a result, 46 lead molecules were designed and their biological and pharmacokinetic activities were predicted in silico. Screening filters by 3D-QSAR, Molecular Docking, drug-like and ADME-Tox identified the computer-designed compounds P54 and P55 as the best candidates to achieve high inhibition of c-Met enzymatic activity compared to the synthesized template compound T14. Finally, through molecular dynamics simulations, the structural properties and dynamics of c-Met free and complex (PDB code: 3LQ8) in the presence of 4-phenoxypyridine-derived compounds in an aqueous environment are discussed. Overall, the rectosynthesis of the designed drug inhibitors (P54 and P55) and their in vitro and in vivo bioactivity evaluation may be attractive for design and discovery of novel drug effective to inhibit c-Met enzymatic activity.Communicated by Ramaswamy H. Sarma.

11.
Heliyon ; 8(12): e11991, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36544815

ABSTRACT

Butyrylcholinesterase is an acetylcholine-degrading enzyme involved in the memorization process, which is becoming an interesting target for the symptomatic treatment of Alzheimer's disease. In the present investigation, the structure-activity relationship of a set of Liquiritigenin derivatives recently revealed to be Butyrylcholinesterase inhibitors was studied basing on comparative field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMISA). As a result, performant models with high predictive capability have been developed (CoMFA model: R2 = 0.91, Q2 = 0.62, R2 pred = 0.85; CoMISA model: R2 = 0.92, Q2 = 0.59, R2 pred = 0.83) and implemented to design new Liquiritigenin derivatives with improved activity. Besides, the affinity of the designed derivatives towards the active site of Butyrylcholinesterase, was confirmed by molecular docking and molecular dynamics studies. Moreover, they exhibited good pharmacokinetics properties. Accordingly, the outcomes of the present investigations can provide important direction for the development of new anti-Alzheimer's drug candidates.

12.
Struct Chem ; 33(5): 1667-1690, 2022.
Article in English | MEDLINE | ID: mdl-35818588

ABSTRACT

Small molecules such as 9,10-dihydrophenanthrene derivatives have remarkable activity toward inhibition of SARS-CoV-2 3CLpro and COVID-19 proliferation, which show a strong correlation between their structures and bioactivity. Therefore, these small compounds could be suitable for clinical pharmaceutical use against COVID-19. The objective of this study was to remodel the structures of 9,10-dihydrophenanthrene derivatives to achieve a powerful biological activity against 3CLpro and favorable pharmacokinetic properties for drug design and discovery. Therefore, by the use of bioinformatics techniques, we developed robust 3D-QSAR models that are capable of describing the structure-activity relationship for 46 molecules based on 9,10-dihydrophenanthrene derivatives using CoMFA/SE (R 2 = 0.97, Q 2 = 0.81, R 2 pred = 0.95, c R 2 p = 0.71) and CoMSIA/SEHDA (R 2 = 0.94, Q 2 = 0.76, R 2 pred = 0.91, c R 2 p = 0.65) techniques. Accordingly, 96 lead compounds were generated based on a template molecule that showed the highest observed activity in vitro (T40, pIC50 = 5.81) and predicted their activities and bioavailability in silico. The rational screening outputs of 3D-QSAR, Molecular docking, ADMET, and MM-GBSA led to the identification of 9 novel modeled molecules as potent noncovalent drugs against SARS-CoV-2-3CLpro. Finally, by molecular dynamics simulations, the stability and structural dynamics of 3CLpro free and complex (PDB code: 6LU7) were discussed in the presence of samples of 9,10-dihydrophenanthrene derivative in an aqueous environment. Overall, the retrosynthesis of the proposed drug compounds in this study and the evaluation of their bioactivity in vitro and in vivo may be interesting for designing and discovering a new drug effective against COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02004-z.

13.
J Mol Model ; 28(4): 106, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35352175

ABSTRACT

In the present study, a quantitative relationship between the biological inhibitory activity of alpha-amylase and molecular structures of novel benzimidazole derivatives is analyzed in silico. The best QSAR model screened via MLR technique indicated that the exact mass, topological diameter and numerical rotational bonding structural properties of benzimidazole derivatives highly affect the bioactivity of these compounds against α-amylase. Based on the structural properties identified via linear QSAR model favorable for improving pIC50 of benzimidazole derivatives, fourteen new molecules bearing benzimidazole radicals were designed and their biological inhibitory activity against α-amylase was improved. QSAR model predictions showed that the designed molecules exhibited a higher potential biological level activity IC50 than acarbose used in positive control (IC50= 1.46 µM). Screening of drug-like properties, pharmacokinetics and toxicity of the proposed molecules led to select three molecules as candidates for use as drug aid to ingest starch and glycogen. As a result, using molecular docking simulations, the docking poses of the three molecules inside the α-amylase receptor pocket (PDB code: 1HNY) were predicted. Also, the most important potential interactions between the active amino acid sites in α-amylase protein pocket and the proposed drug molecules were described. The obtained hypotheses regarding the stability of the proposed molecules inside α-amylase pocket were validated by carrying out molecular dynamic simulations in aqueous background similar to the ones of proteins. The DM results confirmed the optimal stability of the α-amylase backbone with the drug molecules proposed in this computational investigation.


Subject(s)
Benzimidazoles , alpha-Amylases , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry
14.
Struct Chem ; 33(4): 1063-1084, 2022.
Article in English | MEDLINE | ID: mdl-35345415

ABSTRACT

In the present work, 27 triterpene derivatives have been subjected to 3D-QSAR, ADME-Tox, and molecular docking for their insecticidal activity. The selected derivatives are previously semi-synthesized based on compounds obtained from Euphorbia resinifera and Euphorbia officinarum latex. The in silico studies were used to predict and to evaluate the antibacterial and insecticidal properties of the 3D structure of triterpene derivatives. The 3D-QSAR models are developed using CoMFA and CoMSIA techniques, and they have showed excellent statistical results (R 2 = 0.99; Q 2 = 0.672; R 2 pred = 0.91 for CoMFA and R 2 = 0.97; Q2 = 0.61; R 2 pred = 0.94 for CoMSIA). The results indicate that the built models are able to describe the relationship between the structure of triterpene derivatives and the pLD50 bioactivity. Based on contour maps obtained from CoMFA and CoMSIA models, 38 new molecules are designed and their pLD50 activities are predicted. The drug-like and ADME-Tox properties of the molecule designed are examined and led to the selection of four molecules (55, 56, 59, 64) as promising antibacterial and insecticidal agents. Compounds 55, 56, 59, and 64 are able to inhibit the MurE (PDB code: 1E8C) and EcR (PDB code: 1R20) proteins involved in the process of antibacterial and insecticidal activities. This hypothesis is confirmed by the implementation of a molecular docking test. This test predicted the most important referential interactions that occur between the structure of triterpene derivatives and the targeted receptors. Among the four docked molecules, three molecules (55, 56, and 59) showed greater stability than the reference molecule 16 inside the MurE and EcR receptors pocket. Therefore, the structure of the three new triterpene derivatives can be adopted as reference for the synthesis of antibacterial drugs and also in the development of insecticides.

15.
Heliyon ; 7(7): e07463, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34296007

ABSTRACT

A quantitative structure-activity relationship (QSAR) study is performed on 48 novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2 derivatives as anticancer agents capable of inhibiting c-Met receptor tyrosine kinase. The present study is conducted using multiple linear regression, multiple nonlinear regression and artificial neural networks. Three QSAR models are developed after partitioning the database into two sets (training and test) via the k-means method. The obtained values of the correlation coefficients by the three developed QSAR models are 0.90, 0.91 and 0.92, respectively. The resulting models are validated by using the external validation, leave-one-out cross-validation, Y-randomization test, and applicability domain methods. Moreover, we evaluated the drug-likeness properties of seven selected molecules based on their observed high activity to inhibit the c-Met receptor. The results of the evaluation showed that three of the seven compounds present drug-like characteristics. In order to identify the important active sites for the inhibition of the c-Met receptor responsible for the development of cancer cell lines, the crystallized form of the Crizotinib-c-Met complex (PDB code: 2WGJ) is used. These sites are used as references in the molecular docking test of the three selected molecules to identify the most suitable molecule for use as a new c-Met inhibitor. A comparative study is conducted based on the evaluation of the predicted properties of ADMET in silico between the candidate molecule and the Crizotinib inhibitor. The comparison results show that the selected molecule can be used as new anticancer drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...