Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39061141

ABSTRACT

Aberrant estrogen receptor (ERα) signaling mediates detrimental effects of tamoxifen including drug resistance and endometrial hyperplasia. ERα36, an alternative isoform of ERα, contributes to these effects. We have demonstrated that CK2 modulates ERα expression and function in breast cancer (BCa). Here, we assess if CX-4945 (CX), a clinical stage CK2 inhibitor, can disrupt ERα66 and ERα36 signaling in BCa. Using live cell imaging, we assessed the antiproliferative effects of CX in tamoxifen-sensitive and tamoxifen-resistant BCa cells in monolayer and/or spheroid cultures. CX-induced alterations in ERα66 and ERα36 mRNA and protein expression were assessed by RT-PCR and immunoblot. Co-immunoprecipitation was performed to determine the differential interaction of ERα isoforms with HSP90 and CK2 upon CX exposure. CX caused concentration-dependent decreases in proliferation in tamoxifen-sensitive MCF-7 and tamoxifen-resistant MCF-7 Tam1 cells and significantly repressed spheroid growth in 3D models. Additionally, CX caused dramatic decreases in endogenous or exogenously expressed ERα66 and ERα36 protein. Silencing of CK2ß, the regulatory subunit of CK2, resulted in destabilization and decreased proliferation, similar to CX. Co-immunoprecipitation demonstrated that ERα66/36 show CK2 dependance for interaction with molecular chaperone HSP90. Our findings show that CK2 functions regulate the protein stability of ERα66 and ERα36 through a mechanism that is dependent on CK2ß subunit and HSP90 chaperone function. CX may be a component of a novel therapeutic strategy that targets both tamoxifen-sensitive and tamoxifen-resistant BCa, providing an additional tool to treat ERα-positive BCa.

2.
Biol Lett ; 15(10): 20190518, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31615375

ABSTRACT

Poikilothermic organisms are predicted to show reduced body sizes as they experience warming environments under a changing global climate. Such a shrinking of size is expected under scenarios where rising temperatures increase cellular reaction rates and basal metabolic energy demands, therein requiring limited energy to be shifted from growth. Here, we provide evidence that the ecological changes associated with warming may not only lead to shrinking body size but also trigger shifts in morphology. We documented 33.4 and 39.0% declines in body mass and 7.2 and 7.6% reductions in length for males and females, respectively, in a wild population of Amargosa pupfish, Cyprinodon nevadensis amargosae, following an abrupt anthropogenically driven temperature increase. That reduction in size was accompanied by the partial or complete loss of paired pelvic fins in approximately 34% of the population, a morphological change concomitant with altered body dimensions including head size and body depth. These observations confirm that increasing temperatures can reduce body size under some ecological scenarios and highlight how human-induced environmental warming may also trigger morphological changes with potential relevance for fitness.


Subject(s)
Environment , Fishes , Animals , Body Size , Climate Change , Ecology , Female , Global Warming , Male , Temperature
3.
Gen Comp Endocrinol ; 250: 58-69, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28596078

ABSTRACT

The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social status and hypothalamic lnpep transcript abundance and suggest that variation in the rate of VT/IT peptide inactivation by LNPEP may be a contributing component in the mechanism whereby nonapeptides regulate social behavior.


Subject(s)
Behavior, Animal , Cystinyl Aminopeptidase/metabolism , Fishes/genetics , Fishes/metabolism , Hypothalamus/metabolism , Social Behavior , Adult , Amino Acid Sequence , Animals , Base Sequence , Cystinyl Aminopeptidase/chemistry , DNA, Complementary/genetics , Female , Gene Expression Profiling , Humans , Male , Phylogeny , Pregnancy , Principal Component Analysis , Prosencephalon/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...