Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(18): 12879-12887, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29700525

ABSTRACT

An efficient heat activating mediator with an enhanced specific absorption rate (SAR) value is attained via control of the iron oxide (Fe3O4) nanoparticle size from 3 to 32 nm. Monodispersed Fe3O4 nanoparticles are synthesized via a seed-less thermolysis technique using oleylamine and oleic acid as the multifunctionalizing agents (surfactant, solvent and reducing agent). The inductive heating properties as a function of particle size reveal a strong increase in the SAR values with increasing particle size up to 28 nm. In particular, the SAR values of ferromagnetic nanoparticles (>16 nm) are strongly enhanced with the increase of ac magnetic field amplitude than that for the superparamagnetic (3-16 nm) nanoparticles. The enhanced SAR values in the ferromagnetic regime are attributed to the synergistic contribution from the hysteresis and susceptibility loss. Specifically, the 28 nm Fe3O4 nanoparticles exhibit an enhanced SAR value of 801 W g-1 which is nearly an order higher than that of the commercially available nanoparticles.

2.
Nanotechnology ; 26(7): 075601, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25609497

ABSTRACT

Ferromagnetic FeCo nanocrystals with high coercivity have been synthesized using a reductive decomposition method. The sizes and shapes of the nanocrystals were found to be dependent on reaction parameters such as the surfactant ratio, the precursor concentration and the heating rate. Synthesized nanocrystals have a body-centered cubic crystal structure for both particles and nanowires and the (110) crystalline direction is along the long axis of the nanowires. The coercivity and magnetization of the FeCo nanocrystals are found to be dependent on morphology. Nanowires of Fe60Co40 with saturation magnetization of 92 emu g(-1) and coercive force of 1.2 kOe have been obtained in this study.

3.
Sci Rep ; 4: 5345, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24939036

ABSTRACT

Cobalt nanowires with high aspect ratio have been synthesized via a solvothermal chemical process. Based on the shape anisotropy and orientation of the nanowire assemblies, a record high room-temperature coercivity of 10.6 kOe has been measured in Co nanowires with a diameter of about 15 nm and a mean length of 200 nm. As a result, energy product of the wires reaches 44 MGOe. It is discovered that the morphology uniformity of the nanowires is the key to achieving the high coercivity and high energy density. Nanowires of this type are ideal building blocks for future bonded, consolidated and thin film magnets with high energy density and high thermal stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...