Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Main subject
Language
Publication year range
1.
Electron. j. biotechnol ; 34: 67-75, july. 2018. graf, tab
Article in English | LILACS | ID: biblio-1047367

ABSTRACT

Background: The whole-genome sequences of nine Rhizobium species were evaluated using different in silico molecular techniques such as AFLP-PCR, restriction digest, and AMPylating enzymes. The entire genome sequences were aligned with progressiveMauve and visualized by reconstructing phylogenetic tree using NTSYS pc 2.11X. The "insilico.ehu.es" was used to carry out in silico AFLP-PCR and in silico restriction digest of the selected genomes. Post-translational modification (PTM) and AMPylating enzyme diversity between the proteome of Rhizobium species were determined by novPTMenzy. Results: Slight variations were observed in the phylogeny based on AFLP-PCR and PFGE and the tree based on whole genome. Results clearly demonstrated the presence of PTMs, i.e., AMPylation with the GS-ATasE (GlnE), Hydroxylation, Sulfation with their domain, and Deamidation with their specific domains (AMPylating enzymes) GS-ATasE (GlnE), Fic, and Doc (Phosphorylation); Asparagine_hydroxylase and Collagen_prolyl_lysyl_hydroxylase; Sulfotransferase; and CNF (Cytotoxic Necrotizing Factors), respectively. The results pertaining to PTMs are discussed with regard to functional diversities reported in these species. Conclusions: The phylogenetic tree based on AFLP-PCR was slightly different from restriction endonuclease- and PFGE-based trees. Different PTMs were observed in the Rhizobium species, and the most prevailing type of PTM was AMPylation with the domain GS-ATasE (GlnE). Another type of PTM was also observed, i.e., Hydroxylation and Sulfation, with the domains Asparagine_hydroxylase and Collagen_prolyl_lysyl_hydroxylase and Sulfotransferase, respectively. The deamidation type of PTM was present only in Rhizobium sp. NGR234. How to cite: Qureshi MA, Pervez MT, Babar ME, et al. Genomic comparisons of Rhizobium species using in silico AFLP-PCR, endonuclease restrictions and ampylating enzymes.


Subject(s)
Rhizobium/genetics , Phylogeny , Rhizobium/enzymology , Rhizobium/physiology , Symbiosis , Computer Simulation , DNA Restriction Enzymes , Polymerase Chain Reaction/methods , Sequence Analysis , Proteome , Genomics , Amplified Fragment Length Polymorphism Analysis , Fabaceae/microbiology
2.
Iran J Biotechnol ; 15(3): 186-193, 2017.
Article in English | MEDLINE | ID: mdl-29845068

ABSTRACT

Background: Diagnostic molecular marker studies are in vogue to have insight of most prevalent animal diseases including cancer. Objectives: Gene expression profiling of pro and anti-apoptotic genes was conducted in dog Lymphoma, CTVT, SCC, granuloma, perianal adenocarcinoma and mammary tumors. Materials and Methods: Cancerous tissues of 21 affected animals were obtained. Total RNA was extracted followed by cDNA synthesis. Comparative Ct method via Taqman assay (RT-qPCR) was used to quantify corresponding mRNA molecules, Tp53 and Hspb1, as normalized by GAPDH as the reference gene . Results:Hspb1 showed ectopic expression in lymphoma, CTVT and mammary tumors; its down-regulation was observed in granuloma and oral SCC with fold difference (FD) of ±35. Similarly, Tp53 as the tumor suppressor gene with pro-apoptotic properties, showed up-regulation in all tumor types, notably 80% of mammary tumors and 60% of CTVT. The FD values were 33.31 and 2.27, respectively. Conclusion: Altered transcriptomic response of Hspb1 and Tp53 was observed in all cancer types of Canis familiaris. The resulting profile depicts the involvement of the genes in cancer pathways. Thus, the data might be helpful for diagnosis, prognosis, identification and classification of these widespread neoplasms in this species.

3.
J Vet Res ; 61(4): 535-542, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29978120

ABSTRACT

INTRODUCTION: Eight microsatellite loci were used to define genetic diversity among five native water buffalo breeds in Pakistan. MATERIAL AND METHODS: Blood samples (10 mL) from 25 buffaloes of each of the Nili, Ravi, Nili-Ravi, Kundhi, and Azi-Kheli breeds were collected aseptically from the jugular vein into 50 ml Falcon tubes containing 200 µl of 0.5 M EDTA. The phenol-chloroform method was used to extract DNA and the regions were amplified for microsatellite analysis. The eight microsatellite markers ETH10, INRA005, ILSTS029, ILSTS033, ILSTS049, ILSTS052, ETH225, and CSSM66 were analysed. RESULTS: The effective number of alleles across all loci was as usual lower than the observed values with a mean value of 2.52 alleles per locus. The overall allele frequency varied from 0.0041 for alleles B, I, and J over respective loci ILSTS052, INRA005, and ILSTS029 to 0.80 for allele H over locus ILSTS029. The average observed and expected heterozygosity values across all polymorphic loci in all studied buffalo breeds were 0.43 and 0.53, respectively. The overall value for polymorphic information content of considered microsatellite markers was 0.53, suggesting their appropriateness for genetic diversity analysis in buffalo. The mean Fis value was 0.13 and all loci except ILSTS049 were found significantly deviated from HWE, most likely due to non-random breeding. The five buffalo populations were genetically less diverse as indicated by a small mean Fst value (0.07). The average gene flow (Nm) indicative for population migration was calculated as 3.31. Nei's original measures of genetic distance (Ds) revealed ancient divergence of the Nili and Azi-Kheli breeds (Ds = 0.1747) and recent divergence of the Nili and Ravi breeds (Ds = 0.0374). CONCLUSION: These estimates of genetic diversity were seen to coincide with phenotypic differentiation among the studied buffalo breeds. The present study reports the first microsatellite marker-based genetic diversity analysis in Pakistani buffalo breeds, and might facilitate similar studies in other livestock breeds of Pakistan.

4.
Iran J Biotechnol ; 14(3): 202-212, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28959337

ABSTRACT

BACKGROUND: Molecular marker based cancer diagnosis gaining more attention in the current genomics era. So, Hspb1 and Tp53 gene characterization and their mRNA expression might be helpful in diagnosis and prognosis of cat mammary adenocarcinoma. It will also add information in comparative cancer genetics and genomics. OBJECTIVES: Eight tumors of Siamese cats were analyzed to ascertain germ-line and tissue-specific somatic DNA variations of Hspb1 and Tp53 genes along with the ectopic differential expression in tumorous and normal tissues were also analyzed. MATERIALS AND METHODS: Tumorous tissues and peripheral blood from mammary adenocarcinoma affected Siamese cats were collected from the Pet center-UVAS. DNA and RNA were extracted from these tissues to analyze the Hspb1 and Tp53 DNA variants and ectopic expression of their mRNA within cancerous and normal tissues. RESULTS: Exon 1 and 3 revealed as hotspots in Hspb1 gene. The 5´UTR region of the exon1 bear six mutation including 3 transitions, 2 transversion and one heterozygous synonymous transversion in two samples at locus c.34C>C/A. Exon 3 has 1 transversion at c.773A>A/T, 3´UTR of this exon harbor two point mutations at 1868A>T and 2193C>T loci. Intron 2 has two alterations at 1490C>C/T and GTCT4del at 1514. Overall up-regulation of Hspb1 gene was observed. While exons 3, 4 and 7 of Tp53 harbor a single variationat c.105A>A/G, c.465T>T/C and c.859G>T respectively. The locus c.1050G>G/A in exon 9 is a heterozygous (G/A) in 3 samples and homozygous (G) in 2 other tumours. Introns 3, 5, 7 and 9 harbor 3, 4, 2 and 7 altered loci respectively. Sixty percent of cancers showed up-regulated trend of Tp53 gene. CONCLUSIONS: Tumor specific mutations and ectopic expression of Hspb1 and Tp53 genes might be helpful in the diagnosis of the mammary lesions and endorse their involvement in cat mammary neoplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...