Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JIMD Rep ; 64(5): 327-336, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701325

ABSTRACT

Glycogen storage type V (GSD V-McArdle Syndrome) is a rare neuromuscular disorder characterised by severe pain early after the onset of physical activity. A recent series indicated a diagnostic delay of 29 years; hence reports of children affected by the disorder are uncommon (Lucia et al., 2021, Neuromuscul Disord, 31, 1296-1310). This paper presents eight patients with a median onset age of 5.5 years and diagnosis of 9.5 years. Six patients had episodes of rhabdomyolysis with creatine kinase elevations >50 000 IU/L. Most episodes occurred in relation to eccentric non-predicted activities rather than regular exercise. One of the patients performed a non-ischaemic forearm test. One patient was diagnosed subsequent to a skeletal muscle biopsy, and all had confirmatory molecular genetic diagnosis. Three were homozygous for the common PYGM:c.148C > T (p.Arg50*) variant. All but one patient had truncating variants. All patients were managed with structured exercise testing to help them identify 'second-wind', and plan an exercise regimen. In addition all also had an exercise test with 25 g maltodextrin which had statistically significant effect on ameliorating ratings of perceived exertion. GSD V is under-recognised in paediatric practice. Genetic testing can readily diagnose the condition. Careful identification of second-wind symptomatology during exercise with the assistance of a multi-disciplinary team, allows children to manage activities and tolerate exercise. Maltodextrin can be used for structured exercise, but excessive utilisation may lead to weight gain. Early intervention and education may improve outcomes into adult life.

2.
Epilepsia ; 63(7): 1736-1747, 2022 07.
Article in English | MEDLINE | ID: mdl-35364618

ABSTRACT

OBJECTIVE: Rett syndrome (RTT), commonly caused by methyl-CpG-binding protein 2 (MECP2) pathogenic variants, has many comorbidities. Fifty to ninety percent of children with RTT have epilepsy, which is often drug-resistant. Cannabidivarin (CBDV), a non-hallucinogenic phytocannabinoid, has shown benefit in MECP2 animal models. This phase 1 trial assessed the safety and tolerability of CBDV in female children with RTT and drug-resistant epilepsy, as well as the effect on mean monthly seizure frequency (MMSF), the electroencephalogram (EEG), and non-epilepsy comorbid symptoms. METHODS: Five female children with drug-resistant epilepsy and a pathogenic MECP2 variant were enrolled. Baseline clinical and laboratory assessments, including monthly seizure frequency, were recorded. CBDV oral solution (50 mg/ml) was prescribed and titrated to 10 mg/kg/day. Data collected included pharmacokinetics, seizure type and frequency, adverse events, EEG, and responses to the Rett Syndrome Behaviour Questionnaire and Rett Syndrome Symptom Severity Index, and were compared to baseline data. RESULTS: All five children reached the maximum CBDV dose of 10 mg/kg/day and had a reduction in MMSF (median = 79% reduction). Three children had MMSF reduction > 75%. This corresponded to an overall reduction in seizure frequency from 32 to 7.2 seizures per month. Ninety-one percent of adverse events were mild or moderate, and none required drug withdrawal. Sixty-two percent were judged to be unrelated to CBDV. Thirty-one percent of adverse events were identified as possibly related, of which nearly all were mild, and the remainder were later assessed as RTT symptoms. Hypersomnolence and drooling were identified as related to CBDV. No serious adverse events reported were related to CBDV. No significant change was noted in EEG or non-epilepsy-related symptoms of RTT. SIGNIFICANCE: A dose of 10 mg/kg/day of CBDV is safe and well tolerated in a pediatric RTT cohort and suggests improved seizure control in children with MECP2-related RTT.


Subject(s)
Cannabinoids , Epilepsy , Rett Syndrome , Animals , Cannabinoids/adverse effects , Epilepsy/drug therapy , Female , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/therapeutic use , Rett Syndrome/complications , Rett Syndrome/drug therapy , Seizures/complications , Seizures/drug therapy
4.
Genet Med ; 23(12): 2415-2425, 2021 12.
Article in English | MEDLINE | ID: mdl-34400813

ABSTRACT

PURPOSE: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. METHODS: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. RESULTS: Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. CONCLUSION: We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.


Subject(s)
Cardiomyopathies , Death, Sudden, Cardiac , Adolescent , Alleles , Cardiomyopathies/genetics , Child, Preschool , Death, Sudden, Cardiac/etiology , Humans , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Mitochondrial Proteins/genetics , Mutation
5.
Genet Med ; 22(5): 908-916, 2020 05.
Article in English | MEDLINE | ID: mdl-31904027

ABSTRACT

PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS: A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS: Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION: The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.


Subject(s)
Cardiomyopathies , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , 3-Hydroxybutyric Acid , Acyl-CoA Dehydrogenase/genetics , Humans , Infant , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Retrospective Studies
6.
Eur J Hum Genet ; 23(9): 1171-5, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25424712

ABSTRACT

Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype.


Subject(s)
Gene Deletion , Methyl-CpG-Binding Protein 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 4/genetics , Rett Syndrome/genetics , Adolescent , Animals , Cerebellum/enzymology , Cerebellum/pathology , Chromosomes, Human, Pair 2/chemistry , Disease Models, Animal , Disease Progression , Female , Gene Expression , Genotype , Hippocampus/enzymology , Hippocampus/pathology , Humans , Methyl-CpG-Binding Protein 2/deficiency , Mice , Mice, Transgenic , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 4/deficiency , Rett Syndrome/enzymology , Rett Syndrome/pathology , Twins, Monozygotic
7.
Eur J Hum Genet ; 21(5): 522-7, 2013 May.
Article in English | MEDLINE | ID: mdl-22968132

ABSTRACT

Rett syndrome is a clinically defined neurodevelopmental disorder almost exclusively affecting females. Usually sporadic, Rett syndrome is caused by mutations in the X-linked MECP2 gene in ∼90-95% of classic cases and 40-60% of individuals with atypical Rett syndrome. Mutations in the CDKL5 gene have been associated with the early-onset seizure variant of Rett syndrome and mutations in FOXG1 have been associated with the congenital Rett syndrome variant. We report the clinical features and array CGH findings of three atypical Rett syndrome patients who had severe intellectual impairment, early-onset developmental delay, postnatal microcephaly and hypotonia. In addition, the females had a seizure disorder, agenesis of the corpus callosum and subtle dysmorphism. All three were found to have an interstitial deletion of 14q12. The deleted region in common included the PRKD1 gene but not the FOXG1 gene. Gene expression analysis suggested a decrease in FOXG1 levels in two of the patients. Screening of 32 atypical Rett syndrome patients did not identify any pathogenic mutations in the PRKD1 gene, although a previously reported frameshift mutation affecting FOXG1 (c.256dupC, p.Gln86ProfsX35) was identified in a patient with the congenital Rett syndrome variant. There is phenotypic overlap between congenital Rett syndrome variants with FOXG1 mutations and the clinical presentation of our three patients with this 14q12 microdeletion, not encompassing the FOXG1 gene. We propose that the primary defect in these patients is misregulation of the FOXG1 gene rather than a primary abnormality of PRKD1.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 14/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , Nerve Tissue Proteins/genetics , Phenotype , Protein Kinase C/genetics , Rett Syndrome/genetics , Child , Comparative Genomic Hybridization , Cytogenetic Analysis , DNA Mutational Analysis , Fatal Outcome , Female , Gene Expression Profiling , Humans , Male , Microarray Analysis , Rett Syndrome/pathology
8.
Twin Res Hum Genet ; 13(2): 168-78, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20397747

ABSTRACT

Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting females almost exclusively and is characterized by a wide spectrum of clinical manifestations. Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene have been found in up to 95% of classical RTT cases and a lesser proportion of atypical cases. Recently, mutations in another X-linked gene, CDKL5 (cyclin-dependent kinase-like 5) have been found to cause atypical RTT, in particular the early onset seizure (Hanefeld variant) and one female with autism. In this study we screened several cohorts of children for CDKL5 mutations, totaling 316 patients, including individuals with a clinical diagnosis of RTT but who were negative for MECP2 mutations (n=102), males with X-linked mental retardation (n=9), patients with West syndrome (n=52), patients with autism (n=59), patients with epileptic encephalopathy (n=33), patients with Aicardi syndrome (n=7) and other patients with intellectual disability with or without seizures (n=54). In all, seven polymorphic variations and four de novo mutations (c.586C>T [p.S196L]; c.58G>C [p.G20R]; c.2504delC [p.P835fs]; deletion of exons 1-3) were identified, and in all instances of the latter the clinical phenotype was that of an epileptic encephalopathy. These results suggest that pathogenic CDKL5 mutations are unlikely to be identified in the absence of severe early-onset seizures and highlight the importance of screening for large intragenic and whole gene deletions.


Subject(s)
Cognition Disorders/genetics , Cyclin-Dependent Kinase 5/genetics , Mutation , Rett Syndrome/diagnosis , Rett Syndrome/genetics , Seizures/genetics , Amino Acid Sequence , Cognition Disorders/diagnosis , Cognition Disorders/enzymology , Cohort Studies , Cyclin-Dependent Kinase 5/metabolism , Female , Genetic Testing , Humans , Male , Molecular Sequence Data , Rett Syndrome/enzymology , Seizures/diagnosis , Seizures/enzymology
9.
Am J Hum Genet ; 75(6): 1079-93, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15492925

ABSTRACT

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G-->A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps--but is not identical to--that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations.


Subject(s)
Heredodegenerative Disorders, Nervous System/genetics , Mutation/genetics , Protein Serine-Threonine Kinases/genetics , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Brain/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, X/genetics , DNA Primers , DNA-Binding Proteins/genetics , Dosage Compensation, Genetic , Fluorescence , Genetic Testing , Haplotypes/genetics , Humans , In Situ Hybridization , Intellectual Disability/genetics , Methyl-CpG-Binding Protein 2 , Mice , Mice, Transgenic , Microsatellite Repeats/genetics , Molecular Sequence Data , Pedigree , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Rett Syndrome/genetics , Sequence Analysis, DNA
10.
Am J Med Genet A ; 118A(2): 103-14, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12655490

ABSTRACT

Rett syndrome (RTT) is a clinically defined disorder that describes a subset of patients with mutations in the X-linked MECP2 gene. However, there is a high degree of variability in the clinical phenotypes produced by mutations in MECP2, even amongst classical RTT patients. In a large-scale screening project, this variability has been examined by looking at the effects of mutation type, functional domain affected and X-inactivation. Mutations have been identified in 60% of RTT patients in this study (25% of whom were atypical), including 23 novel mutations and polymorphisms. More mutations were found in classical patients (63%) compared to atypical patients (44%). All of the pathogenic mutations were de novo in patients for whom parent DNA was available for screening. A composite phenotype score was developed, based on the recommendations for reporting clinical features in RTT of an international collaborative group. This score proved useful for summarising phenotypic severity, but did not correlate with mutation type, domain affected or X-inactivation, probably due to complex interactions between all three. Other correlations suggested that truncating mutations and mutations affecting the methyl-CpG-binding domain tend to lead to a more severe phenotype. Skewed X-inactivation was found in a large proportion (43%) of our patients, particularly in those with truncating mutations and mutations affecting the MBD. It is therefore likely that X-inactivation does modulate the phenotype in RTT.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA-Binding Proteins/genetics , Dosage Compensation, Genetic , Repressor Proteins , Rett Syndrome/genetics , Australia , Codon, Nonsense , DNA/chemistry , DNA/genetics , DNA Mutational Analysis , Databases as Topic , Frameshift Mutation , Genotype , Humans , Methyl-CpG-Binding Protein 2 , Mutagenesis, Insertional , Mutation , Phenotype , Polymorphism, Genetic , Rett Syndrome/pathology , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...