Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 70(3): 1258-1269, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36579721

ABSTRACT

Valorization of chicken feather is a long-sought approach for its sustainable disposal. Being protein rich, hydrolyzed chicken feather has a wide range of applications, not limited to formulation of microbiological culture media, animal feed, and biofertilizers, but extends to synthesis of bioplastic films, cosmetics, and biomedicals. In this study, a potent keratinolytic isolate was recovered from soil and identified by 16S rRNA as Bacillus thuringiensis. Feather degradation by the isolate was optimized through response surface methodology. First, one-variable-at-a-time technique to assign the factors that affect feather degradation, then Box-Behnken central composite design model were employed. The model, involving three independent variables (initial pH, inoculum size, and concentration of supplementary glucose), was significant (R2  = 0.9716). According to the model, complete feather degradation is obtained at an inoculum size of B. thuringiensis B4 equal to 1 × 1010  CFU/ml, when feather meal broth is supplemented with 1.5% (w/v) glucose and pH adjusted to 8.5. Protein content of the lysate was 327.8 ± 25 µg/ml, and no carbohydrates were detected. SEM/EDX analysis has shown that the hydrolysate consisted mainly of O, P, S, and Se in addition to carbon, while FTIR images assured the presence of carboxyl and amino groups characteristic of peptides and amino acids.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/metabolism , Feathers/chemistry , Feathers/metabolism , Feathers/microbiology , Protein Hydrolysates/analysis , Protein Hydrolysates/metabolism , Peptide Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Chickens/genetics , Chickens/metabolism
2.
Biotechnol Appl Biochem ; 69(2): 469-478, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33576532

ABSTRACT

Para-hydroxybenzoic acid (PHBA) has great potential in biological applications due to its putative antiviral activity against SARS-CoV-2 and its antimicrobial activity in the face of the radically increasing number of multidrug-resistant pathogens. This is in addition to its antimutagenic, anti-inflammatory, antioxidant, hypoglycemic, antiestrogenic, and antiplatelet aggregating activities. In this study, an approximate sixfold increase in the production of PHBA was achieved via biotransformation of caffeic acid by Candida albicans. The improvement was performed in two steps: first, through mutation by gamma irradiation (5 KGy dose), resulting in the recovery of a mutant (CI-24), which produced approximately triple the amount of PHBA produced by the wild-type isolate. Then, biotransformation by this mutant was further optimized via response surface methodology model-based optimization. The maximum PHBA production (7.47 mg/mL) was obtained in a fermentation medium composed of 1% w/v yeast extract as a nitrogen source, with an initial pH of 6.6, incubated at 28 °C at an agitation rate of 250 rpm. To further enhance the performance and economics of the process, cells of the CI-24 mutant were immobilized in calcium alginate beads and could retain an equivalent biotransformation capacity after three successive biotransformation cycles.


Subject(s)
COVID-19 , Candida albicans , Biotransformation , Caffeic Acids , Fermentation , Parabens , SARS-CoV-2
3.
Asian Pac J Trop Med ; 7(11): 860-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25441984

ABSTRACT

OBJECTIVE: To study characteristics of phospholipases C (PLCs), their importance for producing microorganisms as well as the potential of their use for industrial purposes. METHOD: PLC from Bacillus cereus (B. cereus) D101 was selected as an example of Gram-positive PLCs and PLC from Pseudomonas aeruginosa (P. aeruginosa) D183 of Gram-negative ones. Enzymes were partially purified by ammonium sulfate precipitation followed by membrane dialysis. Partially purified preparations were used to study effect of different factors on activities as well as in substrate specificity tests which were conducted using a turbidimetric assay method. RESULTS: Maximum activity was at pH 7 and 8 and 40 °C for P. aeruginosa PLC, and pH 8-10 and 37 °C for B. cereus PLC. Both PLCs were inhibited by Pi at 5 mM or higher, whereas, PLC from B. cereus only was inhibited by EDTA. Activity of P. aeruginosa PLC was not affected by removing Zn(2+) ions from reaction mixture or their replacement with Ca(2+), Ba(2+), Mg(2+) or Mn(2+) ions. Vis-à-vis, activity of B. cereus PLC was found to be metal ion dependent. PLCs from both isolates were relatively thermostable and showed maximum affinity toward phosphatidylcholine. Sphingomyelin and phosphatidylethanolamine were not good substrates and phosphatidylinositol, phosphatidylserine, phosphatidylglycerol and cardiolipin could be considered non-substrates. CONCLUSION: Human body physiological conditions could favor activity of P. aeruginosa and B. cereus PLCs. These enzymes may participate in phosphate scavenging and virulence of producing isolates but not in autolysis. PLCs from both isolates are potential candidates for industrial use.

SELECTION OF CITATIONS
SEARCH DETAIL
...