Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
AMB Express ; 9(1): 124, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31385056

ABSTRACT

Xylanases are in important class of industrial enzymes that are essential for the complete hydrolysis of lignocellulosic biomass into fermentable sugars. In the present study, we report the cloning of novel xylanases with interesting properties from compost metagenomics libraries. Controlled composting of lignocellulosic materials was used to enrich the microbial population in lignocellulolytic organisms. DNA extracted from the compost samples was used to construct metagenomics libraries, which were screened for xylanase activity. In total, 40 clones exhibiting xylanase activity were identified and the thermostability of the discovered xylanases was assayed directly from the library clones. Five genes, including one belonging to the more rare family GH8, were selected for subcloning and the enzymes were expressed in recombinant form in E. coli. Preliminary characterization of the metagenome-derived xylanases revealed interesting properties of the novel enzymes, such as high thermostability and specific activity, and differences in hydrolysis profiles. One enzyme was found to perform better than a standard Trichoderma reesei xylanase in the hydrolysis of lignocellulose at elevated temperatures.

2.
Biotechnol Biofuels ; 10: 30, 2017.
Article in English | MEDLINE | ID: mdl-28184245

ABSTRACT

BACKGROUND: During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. RESULTS: Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous ß-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. CONCLUSIONS: In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei. With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.

3.
PLoS Genet ; 9(9): e1003800, 2013.
Article in English | MEDLINE | ID: mdl-24068965

ABSTRACT

All genomes require a system for avoidance or handling of collisions between the machineries of DNA replication and transcription. We have investigated the roles in this process of the mTERF (mitochondrial transcription termination factor) family members mTTF and mTerf5 in Drosophila melanogaster. The two mTTF binding sites in Drosophila mtDNA, which also bind mTerf5, were found to coincide with major sites of replication pausing. RNAi-mediated knockdown of either factor resulted in mtDNA depletion and developmental arrest. mTTF knockdown decreased site-specific replication pausing, but led to an increase in replication stalling and fork regression in broad zones around each mTTF binding site. Lagging-strand DNA synthesis was impaired, with extended RNA/DNA hybrid segments seen in replication intermediates. This was accompanied by the accumulation of recombination intermediates and nicked/broken mtDNA species. Conversely, mTerf5 knockdown led to enhanced replication pausing at mTTF binding sites, a decrease in fragile replication intermediates containing single-stranded segments, and the disappearance of species containing segments of RNA/DNA hybrid. These findings indicate an essential and previously undescribed role for proteins of the mTERF family in the integration of transcription and DNA replication, preventing unregulated collisions and facilitating productive interactions between the two machineries that are inferred to be essential for completion of lagging-strand DNA synthesis.


Subject(s)
DNA Replication/genetics , DNA, Mitochondrial/biosynthesis , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic , Animals , Binding Sites/genetics , Drosophila melanogaster , Gene Knockdown Techniques , RNA/genetics
4.
FEBS Lett ; 585(21): 3471-7, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22001202

ABSTRACT

Protein splicing catalyzed by inteins has enabled various biotechnological applications such as protein ligation. Successful applications of inteins are often limited by splicing efficiency. Here, we report the comparison of protein splicing between 20 different inteins from various organisms in identical contexts to identify robust inteins with foreign exteins. We found that RadA intein from Pyrococcus horikoshii and an engineered DnaB intein from Nostoc punctiforme demonstrated an equally efficient splicing activity to the previously reported highly efficient DnaE intein from Nostoc punctiforme. The newly identified inteins with efficient cis-splicing activity can be good starting points for the further development of new protein engineering tools.


Subject(s)
Escherichia coli/metabolism , Exteins , Inteins , Protein Splicing , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Escherichia coli/drug effects , Inteins/genetics , Protein Engineering , Protein Splicing/genetics , Temperature
5.
Proc Natl Acad Sci U S A ; 107(20): 9105-10, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20435911

ABSTRACT

Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling.


Subject(s)
Aging/metabolism , Drosophila melanogaster/physiology , Electron Transport Complex I/metabolism , Longevity/physiology , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Animals , Blotting, Western , Caloric Restriction , Drosophila melanogaster/enzymology , Electron Transport Complex I/genetics , Histocytochemistry , Longevity/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...