Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 153(Pt 9): 3184-3195, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17768261

ABSTRACT

Strains of Rhizobium leguminosarum bv. trifolii (Rlt) able to form effective nodules on Trifolium ambiguum (Caucasian clover, CC) form ineffective nodules on Trifolium repens (white clover, WC), whereas strains that form effective nodules on WC usually do not nodulate CC. Here, we investigate the genetic basis of the host-specific nitrogen-fixation phenotype of CC rhizobia. A cosmid library of the symbiotic plasmid from the WC rhizobium strain Rlt NZP514 was introduced into the CC rhizobium strain Rlt ICC105. An 18 kb Asp718 fragment containing the nifABHDKEN and fixABCX genes of NZP514 that imparted the Fix(+) phenotype was identified. Tn5 mutagenesis of this region revealed that the nifHDKEN, fixABC and nifB genes were required for the Fix(+) phenotype, but that the nifA gene was not. Introduction of several plasmids containing NZP514 nif/fix genes into an ICC105 nifA mutant strain demonstrated that the NifA protein of ICC105 was able to activate expression of the NZP514 nif/fix genes but not the ICC105 nif/fix genes in WC nodules. Reporter gene fusion studies showed that the host-specific regulation of the nif/fix genes depended on the DNA region between the promoters of the divergently transcribed nifH and fixA genes. We hypothesize that a protein acting either in response to a host-specific signal or in the absence of such a signal is able to bind upstream of the NifA-binding sites and interact with NifA to prevent it activating nif/fix gene expression.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Nitrogen Fixation/physiology , Oxidoreductases/metabolism , Rhizobium leguminosarum/metabolism , Symbiosis , Trifolium/microbiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , DNA, Intergenic/genetics , Molecular Sequence Data , Operon , Oxidoreductases/chemistry , Oxidoreductases/genetics , Plasmids/genetics , Recombination, Genetic , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/growth & development , Species Specificity
2.
J Bacteriol ; 184(11): 3086-95, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12003951

ABSTRACT

The Mesorhizobium loti strain R7A symbiosis island is a 502-kb chromosomally integrated element which transfers to nonsymbiotic mesorhizobia in the environment, converting them to Lotus symbionts. It integrates into a phenylalanine tRNA gene in a process mediated by a P4-type integrase encoded at the left end of the element. We have determined the nucleotide sequence of the island and compared its deduced genetic complement with that reported for the 611-kb putative symbiosis island of M. loti strain MAFF303099. The two islands share 248 kb of DNA, with multiple deletions and insertions of up to 168 kb interrupting highly conserved colinear DNA regions in the two strains. The shared DNA regions contain all the genes likely to be required for Nod factor synthesis, nitrogen fixation, and island transfer. Transfer genes include a trb operon and a cluster of potential tra genes which are also present on the strain MAFF303099 plasmid pMLb. The island lacks plasmid replication genes, suggesting that it is a site-specific conjugative transposon. The R7A island encodes a type IV secretion system with strong similarity to the vir pilus from Agrobacterium tumefaciens that is deleted from MAFF303099, which in turn encodes a type III secretion system not found on the R7A island. The 414 genes on the R7A island also include putative regulatory genes, transport genes, and an array of metabolic genes. Most of the unique hypothetical genes on the R7A island are strain-specific and clustered, suggesting that they may represent other acquired genetic elements rather than symbiotically relevant DNA.


Subject(s)
Genes, Bacterial , Rhizobiaceae/genetics , Symbiosis , Amino Acids/metabolism , Carbon/metabolism , Gene Transfer, Horizontal/genetics , Genes, Regulator , Lotus/microbiology , Microtubule Proteins/biosynthesis , Microtubule Proteins/genetics , Molecular Sequence Data , Multigene Family , Nitrogen Fixation/genetics , Phosphates/metabolism , Rhizobiaceae/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...