Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36671944

ABSTRACT

Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low colony forming unit (CFU) counts. Available detection methods, though sensitive, fall short in terms of timeliness and often require extensive sample processing. To overcome these limitations, we propose a novel magneto-plasmonic nanosensor (MPnS) by integrating surface plasmon resonance (SPR) properties with spin-spin magnetic relaxation (T2 MR) technology. We engineered MPnS by encapsulating several gold nanoparticles (GNPs) within the polymer-coating of iron oxide nanoparticles (IONPs). First, the polyacrylic acid (PAA)-coated IONPs were synthesized using a solvent precipitation method, then gold chloride solution was used to synthesize GNPs and encapsulate them within the PAA-coatings of IONPs in one step. A magnetic separation technique was used to purify the MPnS and the presence of GNPs within IONPs was characterized using transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and other spectroscopic methods. The synthesized MPnS exhibits MR relaxation properties while possessing amplified optical properties than conventional GNPs. This allows for rapid and ultrasensitive detection of E. coli O157:H7 by SPR, T2 MR, and colorimetric readout. Experiments conducted in simple buffer and in milk as a complex media demonstrated that our MPnS-based assay could detect as low as 10 CFUs of this pathogenic strain of E. coli O157:H7 in minutes with no cross-reactivity. Overall, the formulated MPnS is robust and holds great potential for the ultrasensitive detection of E. coli O157:H7 in a simple and timely fashion. Moreover, this platform is highly customizable and can be used for the detection of other foodborne pathogens.


Subject(s)
Biosensing Techniques , Escherichia coli O157 , Metal Nanoparticles , Humans , Animals , Food Microbiology , Gold/chemistry , Metal Nanoparticles/chemistry , Milk , Biosensing Techniques/methods
2.
Anal Chem ; 94(40): 13968-13977, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36153970

ABSTRACT

Increasing foodborne illnesses have led to global health and economic burdens. E. coli O157:H7 is one of the most common disease-provoking pathogens and known to be lethal Shiga toxin-producing E. coli (STEC) strains. With a low infection dose in addition to person-to-person transmission, STEC infections are easily spread. As a result, specific and rapid testing methods to identify foodborne pathogens are urgently needed. Nanozymes have emerged as enzyme-mimetic nanoparticles, demonstrating intrinsic catalytic activity that could allow for rapid, specific, and accurate pathogen identification in the agrifood industry. In this study, we developed a sensitive nanoplatform based on the traditional ELISA assay with the synergistic properties of gold and iron oxide nanozymes, replacing the conventional enzyme horseradish peroxidase (HRP). We designed an easily interchangeable sandwich ELISA composed of a novel, multifunctional magneto-plasmonic nanosensor (MPnS) with target antibodies (MPnS-Ab). Our experiments demonstrate a 100-fold increase in catalytic activity in comparison to HRP with observable color changes within 15 min. Results further indicate that the MPnS-Ab is highly specific for E. coli O157:H7. Additionally, effective translatability of catalytic activity of the MPnS technology in the lateral flow assay (LFA) platform is also demonstrated for E. coli O157:H7 detection. As nanozymes display more stability, tunable activity, and multi-functionality than natural enzymes, our platform could provide customizable, low-cost assay that combines high specificity with rapid detection for a variety of pathogens in a point-of-care setup.


Subject(s)
Escherichia coli O157 , Foodborne Diseases , Gold , Horseradish Peroxidase , Humans , Shiga Toxin
3.
Pharmaceutics ; 13(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477972

ABSTRACT

Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), blood-lymph barrier (BlyB), blood-air barrier (BAB), stromal barrier (SB), blood-labyrinth barrier (BLaB), blood-retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.

4.
ACS Appl Bio Mater ; 4(5): 3786-3795, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006808

ABSTRACT

Infection with the Zika virus (ZIKV) is an ongoing problem especially as accurate, cost-effective testing remains unresolved. In addition, coinfection occurs with both the Dengue virus (DENV) and ZIKV which leads to cross-reactivity between the flaviviruses and can result in false positives and inaccurate testing. This supports the current need for a simple assay that can detect Zika antibodies sensitively that at the same time can differentiate between cross-reactive antibodies. In this study, we developed customizable magnetic relaxation nanosensors (MRnS) conjugated to various ligands, which included ZIKV (ZENV, zika domain III and NS1) and DENV proteins for specific detection of cross-reactive Zika and Dengue antibodies. Binding interactions between functional MRnS and corresponding targets resulted in the change in spin-spin magnetic relaxation time (T2MR) of water protons, allowing for a rapid and simple means by which these interactions were detected and quantified. Our results show the detection of Zika antibodies within minutes at concentrations as low as 20 nM and display high specificity, reproducibility, and analytical sensitivity. Furthermore, a mixture of functional MRnS was used for the one-step simultaneous detection and differentiation of Zika and Dengue infections. These results demonstrate high specificity and sensitivity for the detection of ZIKV and DENV despite coinfections in both simple and complex media. Overall, our magnetic nanoplatform could be used as a rapid and sensitive assay for the detection of not only Zika- and Dengue-related testing but can be further applied to serological samples of any other pathogens.


Subject(s)
Antibodies, Viral/analysis , Biocompatible Materials/chemistry , Dengue Virus/isolation & purification , Nanostructures/chemistry , Zika Virus/isolation & purification , Magnetic Phenomena , Materials Testing , Particle Size , Sensitivity and Specificity
5.
ACS Appl Nano Mater ; 2(9): 5587-5593, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-34222829

ABSTRACT

Detection of bacterial contaminants in blood and platelet concentrates (PCs) continues to be challenging in clinical settings despite available current testing methods. At the same time, it is important to detect the low bacterial contaminants present at the time of transfusion. Herein, we report the design and synthesis of a dual-modal magneto-fluorescent nanosensor (MFnS) by integrating magnetic relaxation and fluorescence modalities for the wide-range detection of blood-borne pathogens. In this study, functional MFnS are designed to specifically detect Staphylococcus epidermidis and Escherichia coli, two of the predominant bacterial contaminants of PCs. Specific interaction between the target pathogen and functional MFnS resulted in the change of water proton's magnetic relaxation time (T2 MR), indicative of sensitive detection of the target bacteria from low to high colony forming unit (CFU). In addition, the acquired MR signal of MFnS further facilitated the quantitative assessment of the slow and fast growth kinetics of target pathogens. Moreover, the presence of fluorescence modality in MFnS allowed for the detection of multi-contaminants. The bacterial detection was also performed in complex media including whole blood and platelet concentrates, which further demonstrated for it's robust detection sensitivity. Overall, our study indicated that the designer MFnS will have potential for the wide-range detection of blood-borne pathogens, and features desirable qualities including timeliness, sensitivity and, specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...