Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 849742, 2022.
Article in English | MEDLINE | ID: mdl-35585981

ABSTRACT

Normothermic machine perfusion (NMP) is a technique of kidney preservation designed to restore cellular metabolism after cold ischemia. Kidneys are perfused with an oxygenated banked red blood cell (RBC) based solution for 1h at 36°C. During NMP, RBCs can become damaged, releasing free heme into the perfusate. This can act as a damage-associated molecular pattern (DAMP) activating inflammatory signalling pathways. The aim of this study was to measure the levels of free heme during NMP, assess the effect on kidney function and determine any association with inflammatory and stress related gene expression. Levels of free heme were measured in perfusate samples from a series of donation after circulatory death (DCD) kidneys undergoing NMP as part of a randomised controlled trial (RCT). The age of RBCs and levels of free heme were correlated with perfusion parameters. Changes in gene expression were analysed in a series of kidneys declined for transplantation using the NanoString nCounter Organ Transplant Panel and qRT-PCR. Older units of RBCs were associated with higher levels of free heme and levels increased significantly during NMP (Pre 8.56 ± 7.19µM vs 26.29 ± 15.18µM, P<0.0001). There was no association with levels of free heme and perfusion parameters during NMP (P > 0.05). Transcriptional and qPCR analysis demonstrated the upregulation of differentially expressed genes associated with apoptosis (FOS and JUN), inflammatory cytokines (IL-6, SOCS3, ATF3), chemokines (CXCL8, CXCL2, CC3/L1) and oxidative stress (KLF4) after NMP. However, these did not correlate with levels of free heme (P >0.05). A significant amount of free heme can be detected in the perfusate before and after NMP particularly when older units of red cells are used. Although transcriptional analysis demonstrated significant upregulation of genes involved with apoptotic, inflammatory and oxidative pathways these were not associated with high levels of free heme.


Subject(s)
Heme , Organ Preservation , Cold Ischemia , Humans , Kidney/physiology , Organ Preservation/methods , Perfusion/methods
2.
Kidney Int ; 101(3): 485-497, 2022 03.
Article in English | MEDLINE | ID: mdl-34838864

ABSTRACT

Kidney transplantation is the optimal treatment for patients with kidney failure; however, early detection and timely treatment of graft injury remain a challenge. Precise and noninvasive techniques of graft assessment and innovative therapeutics are required to improve kidney transplantation outcomes. Extracellular vesicles (EVs) are lipid bilayer-delimited particles with unique biosignatures and immunomodulatory potential, functioning as intermediaries of cell signalling. Promising evidence exists for the potential of EVs to develop precision diagnostics of graft dysfunction, and prognostic biomarkers for clinician decision making. The inherent targeting characteristics of EVs and their low immunogenic and toxicity profiles combined with their potential as vehicles for drug delivery make them ideal targets for development of therapeutics to improve kidney transplant outcomes. In this review, we summarize the current evidence for EVs in kidney transplantation, discuss common methodological principles of EV isolation and characterization, explore upcoming innovative approaches in EV research, and discuss challenges and opportunities to enable translation of research findings into clinical practice.


Subject(s)
Extracellular Vesicles , Kidney Transplantation , Renal Insufficiency , Drug Delivery Systems/methods , Humans , Kidney Transplantation/adverse effects
3.
Am J Transplant ; 21(4): 1382-1390, 2021 04.
Article in English | MEDLINE | ID: mdl-32897651

ABSTRACT

Normothermic machine perfusion (NMP) technologies are emerging as an important adjunct in organ preservation and transplantation. NMP can enable the reduction or avoidance of cold ischemia and allows for pretransplant measurement of function and metabolic status to assess the suitability of the organ for transplantation. The key requirement of NMP is to provide an environment that is protective to the organ, ensures optimal oxygen delivery and supports metabolic function. Red blood cell-based solutions, artificial hemoglobin solutions, and acellular solutions have all been utilized in NMP. However, there is no clear consensus on perfusion protocols. A period of NMP after hypothermic preservation is the most commonly used strategy. As an alternative, several groups have developed and tested the feasibility of more prolonged periods of NMP. There are only a few reports of the application of NMP in clinical kidney transplantation and each uses different approach and conditions. This review details the rationale for NMP protocols considering duration of NMP and different perfusate compositions in experimental and clinical models. We also include a discussion on the mechanistic action of NMP, comparison of subnormothermic and hypothermic conditions, the different logistical approaches and future requirements.


Subject(s)
Kidney Transplantation , Organ Preservation , Cold Ischemia , Kidney , Perfusion , Review Literature as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...