Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(6): e0179376, 2017.
Article in English | MEDLINE | ID: mdl-28632749

ABSTRACT

Soil-transmitted helminths (STHs) are intestinal parasitic nematodes that infect humans, and are transmitted through contaminated soil. These nematodes include the large roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworm (Ancylostoma ceylanicum, Ancylostoma duodenale, and Necator americanus). Nearly 1.5 billion people (~24% of the population) worldwide are infected with at least one species of these parasites, burdening the poor, in particular, children and pregnant women. To combat these diseases, the WHO only recognizes four anthelmintic drugs, including the preferred drug, albendazole, for mass drug administration (MDA). These four drugs have a total of two different mechanisms of action, and, as expected, resistance has been observed. This problem calls for new drugs with different mechanisms of action. Although there is precedence for the use of Caenorhabditis elegans (C. elegans), a free-living nematode, as a model for drug screening and anthelmintic testing, their usefulness for such anthelmintic study is not clear as past research has shown that C. elegans did not show a strong response to albendazole, the MDA drug of choice, in comparison with various STHs under similar treatment. To further examine if C. elegans has the potential to be a good model organism for anthelmintic drug study, we employed a health rating scale in order to tease out potential effects of albendazole, and other anthelmintics, that may have been missed using a binary, dead/alive scale. Using the health-rating scale we found that although the worms may have not been dying, they were sick, showing dose responses to anthelmintic drugs, including albendazole, reinforcing C. elegans as a useful model for anthelmintic study.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Albendazole/pharmacology , Albendazole/therapeutic use , Animals , Anthelmintics/therapeutic use , Helminthiasis/drug therapy , Humans , Inhibitory Concentration 50 , Ivermectin/pharmacology , Ivermectin/therapeutic use , Lethal Dose 50 , Nitro Compounds , Parasitic Sensitivity Tests , Pyrantel/pharmacology , Pyrantel/therapeutic use , Thiazoles/pharmacology , Thiazoles/therapeutic use
2.
Adv Mater ; 26(21): 3368-97, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24700719

ABSTRACT

The miniaturization of power sources aimed at integration into micro- and nano-electronic devices is a big challenge. To ensure the future development of fully autonomous on-board systems, electrodes based on self-supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self-supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li-ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self-supported electrodes fabricated using template, lithography, anodization and self-organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability.


Subject(s)
Electric Power Supplies , Electrodes , Metals/chemistry , Nanostructures/chemistry , Oxides/chemistry , Equipment Design
3.
Mol Biochem Parasitol ; 193(1): 1-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24412397

ABSTRACT

Intestinal nematodes or roundworms (aka soil-transmitted helminths or STHs) cause great disease. They infect upwards of two billion people, leading to high morbidity and a range of health problems, especially in infected children and pregnant women. Development of resistance to the two main classes of drugs used to treat intestinal nematode infections of humans has been reported. To fight STH infections, we need new and more effective drugs and ways to improve the efficacy of the old drugs. One promising alternative drug is nitazoxanide (NTZ). NTZ, approved for treating human protozoan infections, was serendipitously shown to have therapeutic activity against STHs. However, its mechanism of action against nematodes is not known. Using the laboratory nematode Caenorhabditis elegans, we show that NTZ acts on the nematodes through avr-14, an alpha-type subunit of a glutamate-gated chloride ion channel known for its role in ivermectin susceptibility. In addition, a forward genetic screen to select C. elegans mutants resistant to NTZ resulted in isolation of two NTZ resistant mutants that are not in avr-14, suggesting that additional mechanisms are involved in resistance to NTZ. We found that NTZ combines synergistically with other classes of anthelmintic drugs, i.e. albendazole and pyrantel, making it a good candidate for further studies on its use in drug combination therapy of STH infections. Given NTZ acts against a wide range of nematode parasites, our findings also validate avr-14 as an excellent target for pan-STH therapy.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Chloride Channels/antagonists & inhibitors , Thiazoles/pharmacology , Albendazole/pharmacology , Animals , Caenorhabditis elegans/enzymology , Drug Synergism , Nitro Compounds , Pyrantel/pharmacology
4.
Appl Environ Microbiol ; 79(18): 5527-32, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23835175

ABSTRACT

Soil-transmitted helminths (hookworms, whipworms, and large roundworms) are agents of intestinal roundworm diseases of poverty that infect upwards of 2 billion people worldwide. A great challenge in treating these diseases is the development of anthelmintic therapeutics that are inexpensive, can be produced in great quantity, and are capable of delivery under varied and adverse environmental conditions. A potential solution to this challenge is the use of live bacteria that are acceptable for human consumption, e.g., Bacillus subtilis, and that can be engineered with therapeutic properties. In this study, we expressed the Bacillus thuringiensis anthelmintic protein Cry5B in a bacterial strain that has been used as a model for live bacterial therapy, Bacillus subtilis PY79. PY79 transformed with a Cry5B expression plasmid (PY79-Cry5B) is able to express Cry5B from the endogenous B. thuringiensis cry5B promoter. During sporulation of PY79-Cry5B, Cry5B is packaged as a crystal. Furthermore, Cry5B produced in PY79 is bioactive, with a 50% lethal concentration (LC50) of 4.3 µg/ml against the roundworm Caenorhabditis elegans. PY79-Cry5B was a significantly effective therapeutic in experimental Ancylostoma ceylanicum hookworm infections of hamsters. A single 10-mg/kg (0.071 µmol/kg of body weight) dose of Cry5B administered as a Cry5B-PY79 spore crystal lysate achieved a 93% reduction in hookworm burdens, which is superior on a molar level to reductions seen with clinically used anthelmintics. Given that a bacterial strain such as this one can be produced cheaply in massive quantities, our results demonstrate that the engineering and delivery of live bacterial strains have great potential to treat a significant contributor to poverty worldwide, namely, hookworm disease and other soil-transmitted helminthiasis.


Subject(s)
Antibiosis , Bacillus subtilis/growth & development , Bacterial Proteins/metabolism , Biological Therapy/methods , Endotoxins/metabolism , Helminthiasis/therapy , Hemolysin Proteins/metabolism , Intestinal Diseases/therapy , Animals , Bacillus subtilis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Cricetinae , Disease Models, Animal , Endotoxins/genetics , Hemolysin Proteins/genetics , Intestinal Diseases, Parasitic , Treatment Outcome
5.
PLoS One ; 8(7): e70702, 2013.
Article in English | MEDLINE | ID: mdl-23869246

ABSTRACT

Soil-transmitted helminths are parasitic nematodes that inhabit the human intestine. These parasites, which include two hookworm species, Ancylostomaduodenale and Necator americanus, the whipworm Trichuristrichiura, and the large roundworm Ascarislumbricoides, infect upwards of two billion people and are a major cause of disease burden in children and pregnant women. The challenge with treating these diseases is that poverty, safety, and inefficient public health policy have marginalized drug development and distribution to control infection in humans. Anthelmintics (anti-worm drugs) have historically been developed and tested for treatment of non-human parasitic nematodes that infect livestock and companion animals. Here we systematically compare the in vitro efficacy of all major anthelmintic classes currently used in human therapy (benzimidazoles, nicotinic acetylcholine receptor agonists, macrocyclic lactones, nitazoxanide) against species closely related to human parasitic nematodes-Ancylostoma ceylanicum, Trichurismuris, and Ascarissuum--- as well as a rodent parasitic nematode used in veterinary drug discovery, Heligmosomoidesbakeri, and the free-living nematode Caenorhabditis elegans. Extensive in vitro data is complemented with single-dose in vivo data in three rodent models of parasitic diseases. We find that the effects of the drugs in vitro and in vivo can vary greatly among these nematode species, e.g., the efficacy of albendazole is strong on A. ceylanicum but weak on H. bakeri. Nonetheless, certain commonalities of the in vitro effects of the drugs can be seen, e.g., nitazoxanide consistently shows an all-or-nothing response. Our in vitro data suggest that further optimization of the clinical efficacy of some of these anthelmintics could be achieved by altering the treatment routine and/or dosing. Most importantly, our in vitro and in vivo data indicate that the hookworm A. ceylanicum is a particularly sensitive and useful model for anthelmintic studies and should be incorporated early on in drug screens for broad-spectrum human soil-transmitted helminth therapies.


Subject(s)
Anthelmintics/pharmacology , Nematoda/drug effects , Albendazole/pharmacology , Albendazole/therapeutic use , Animals , Anthelmintics/therapeutic use , Cricetinae , Drug Resistance , Female , Ivermectin/pharmacology , Ivermectin/therapeutic use , Male , Mice , Nematode Infections/drug therapy , Nitro Compounds , Parasitic Sensitivity Tests , Pyrantel/pharmacology , Pyrantel/therapeutic use , Species Specificity , Thiazoles/pharmacology , Thiazoles/therapeutic use
6.
Virol J ; 10: 74, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23497173

ABSTRACT

BACKGROUND: The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro. METHODS: Each cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + . RESULTS: We found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction. CONCLUSIONS: In this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Mammals/virology , Transduction, Genetic , Animals , Cell Line , Cells, Cultured , Cricetinae , Dependovirus/classification , Dependovirus/physiology , Genetic Engineering , Genetic Therapy/instrumentation , Genetic Vectors/physiology , Haplorhini , Humans , Mice , Viral Tropism
7.
Hum Gene Ther ; 22(1): 93-100, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20626321

ABSTRACT

The use of lentiviral vectors extends from the laboratory, where they are used for basic studies in virology and as gene transfer vectors gene delivery, to the clinic, where clinical trials using these vectors for gene therapy are currently underway. Lentiviral vectors are useful for gene transfer because they have a large cloning capacity and a broad tropism. Although procedures for lentiviral vector production have been standardized, simple methods to create higher titer virus during production would have extensive and important applications for both research and clinical use. Here we present a simple and inexpensive method to increase the titer by 3- to 8-fold for both integration-competent lentivirus and integration-deficient lentivirus. This is achieved during standard lentiviral production by the addition of caffeine to a final concentration of 2-4 mM. We find that sodium butyrate, a histone deacetylase inhibitor shown previously to increase viral titer, works only ∼50% as well as caffeine. We also show that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) inhibitor NU7026 can also increase viral titer, but that the combination of caffeine and NU7026 is not more effective than caffeine alone. We show that the time course of caffeine treatment is important in achieving a higher titer virus, and is most effective when caffeine is present from 17 to 41 hr posttransfection. Last, although caffeine increases lentiviral vector titer, it has the opposite effect on the titer of adeno-associated virus type 2 vector. Together, these results provide a novel, simple, and inexpensive way to significantly increase the titer of lentiviral vectors.


Subject(s)
Caffeine/chemistry , Genetic Vectors , Lentivirus/genetics , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , HEK293 Cells , Humans , Lentivirus/metabolism , Plasmids/metabolism , Transduction, Genetic , Virus Cultivation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...