Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37528526

ABSTRACT

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Subject(s)
Graft vs Host Disease , Insulins , Islets of Langerhans Transplantation , Receptors, Chimeric Antigen , Humans , Mice , Animals , HLA-A2 Antigen , Leukocytes, Mononuclear , Graft Rejection/prevention & control
2.
bioRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865123

ABSTRACT

Background: Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft- versus -host disease (xGVHD). Methods: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4+ and CD8+ T cells and tested their ability to reject HLA-A2+ islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T cell engraftment, islet function and xGVHD were assessed longitudinally. Results: The speed and consistency of A2-CAR T cells-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of co-injected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, co-injection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2+ human islets within 1 week and without xGVHD for 12 weeks. Conclusions: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of isletreplacement therapies.

3.
Diabetes ; 72(5): 590-598, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36745576

ABSTRACT

Few studies have examined the differentiation of human embryonic stem cell (hESC)-derived pancreatic endoderm cells (PECs) in different implantation sites. Here, we investigate the influence of implantation site and recipient sex on the differentiation of hESC-derived PECs in vivo. Male and female mice were implanted with 5 × 106 hESC-derived PECs under the kidney capsule, in the gonadal fat pad, or subcutaneously within macroencapsulation (TheraCyte) devices. PECs implanted within TheraCyte devices developed glucose-stimulated human C-peptide secretion faster than cells implanted under the kidney capsule or in the gonadal fat pad. Interestingly, hESC-derived PECs implanted under the kidney capsule in females developed glucose-stimulated human C-peptide faster than in males and secreted higher levels of arginine-stimulated glucagon and glucagon-like peptide 1 than other implantation sites. Furthermore, hESC-derived grafts collected from the kidney capsule and gonadal fat pad sites displayed a mix of endocrine and ductal cells as well as contained cysts, whereas TheraCyte device grafts displayed mostly endocrine cells and cysts were not observed. Here we demonstrate that the macroencapsulated subcutaneous site and the female recipient can promote faster differentiation of hESC-derived PECs to endocrine cells in mice. ARTICLE HIGHLIGHTS: Few studies have directly compared the differentiation of human embryonic stem cell-derived progenitors in different implantation sites in male and female recipients. We investigated whether the site of implantation and/or the sex of the recipient influenced the differentiation of pancreatic progenitors in vivo in mice. Mice implanted with cells in macroencapsulation devices contained fewer off-target structures and developed stimulated insulin release faster than other implant sites, while females implanted with cells under the kidney capsule developed stimulated insulin release before males. Macroencapsulation devices reduced the formation of off-target cells from human embryonic stem cell-derived progenitors, a useful characteristic for clinical applications.


Subject(s)
Insulin-Secreting Cells , Humans , Male , Female , Mice , Animals , C-Peptide , Endoderm/transplantation , Cell Differentiation , Glucose
4.
Front Endocrinol (Lausanne) ; 13: 922640, 2022.
Article in English | MEDLINE | ID: mdl-35784543

ABSTRACT

Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Cell Communication , Insulin , Mice , Pancreas
5.
Nat Commun ; 13(1): 735, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136059

ABSTRACT

Insulin receptor (Insr) protein is present at higher levels in pancreatic ß-cells than in most other tissues, but the consequences of ß-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in ß-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined ß-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout ß-cells from female, but not male mice, whereas only male ßInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female ßInsrKO and ßInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter ß-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include ß-cell insulin resistance, which predicts that ß-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female ßInsrKO and ßInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of ß-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that ß-cell insulin resistance in the form of reduced ß-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Hyperinsulinism/genetics , Insulin Resistance/genetics , Insulin-Secreting Cells/metabolism , Receptor, Insulin/genetics , Animals , Datasets as Topic , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat , Disease Models, Animal , Female , Gene Knock-In Techniques , Gene Knockout Techniques , Glucose/metabolism , Humans , Hyperinsulinism/blood , Hyperinsulinism/metabolism , Hyperinsulinism/pathology , Insulin/blood , Insulin/metabolism , Insulin-Secreting Cells/pathology , Male , Mice , Mice, Transgenic , RNA-Seq , Receptor, Insulin/deficiency , Sex Factors
6.
Cell Rep Med ; 2(11): 100434, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34841287

ABSTRACT

miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, ß-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of ß-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-ß signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how ß-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.


Subject(s)
Disease Progression , Gene Deletion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Base Sequence , Cell Line, Tumor , Cell Movement , Diet, High-Fat , Humans , Insulin Secretion , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Organ Specificity , Rats
7.
Sci Rep ; 11(1): 18394, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526546

ABSTRACT

Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre-LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre- controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre- controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.


Subject(s)
Glucose/metabolism , Leptin/metabolism , Myeloid Cells/metabolism , Signal Transduction , Animals , Biomarkers , Blood Glucose/metabolism , Disease Models, Animal , Disease Susceptibility , Energy Metabolism , Gene Knockdown Techniques , Homeostasis , Leptin/genetics , Male , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Mice
8.
Sci Rep ; 9(1): 10829, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346189

ABSTRACT

The study of primary glucagon-secreting α-cells is hampered by their low abundance and scattered distribution in rodent pancreatic islets. We have designed a double-stranded adeno-associated virus containing a rat proglucagon promoter (700 bp) driving enhanced green fluorescent protein (AAV GCG-EGFP), to specifically identify α-cells. The administration of AAV GCG-EGFP by intraperitoneal or intraductal injection led to EGFP expression selectively in the α-cell population. AAV GCG-EGFP delivery to mice followed by islet isolation, dispersion and separation by FACS for EGFP resulted in an 86% pure population of α-cells. Furthermore, the administration of AAV GCG-EGFP at various doses to adult wild type mice did not significantly alter body weight, blood glucose, plasma insulin or glucagon levels, glucose tolerance or arginine tolerance. In vitro experiments in transgene positive α-cells demonstrated that EGFP expression did not alter the intracellular Ca2+ pattern in response to glucose or adrenaline. This approach may be useful for studying purified primary α-cells and for the in vivo delivery of other genes selectively to α-cells to further probe their function or to manipulate them for therapeutic purposes.


Subject(s)
Dependovirus , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Green Fluorescent Proteins , Animals , Blood Glucose , Body Weight/physiology , Insulin/blood , Islets of Langerhans/metabolism , Mice , Promoter Regions, Genetic , Rats
9.
Sci Rep ; 9(1): 3307, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824713

ABSTRACT

The relative contribution of peripheral and central leptin signalling to the regulation of metabolism and the mechanisms through which leptin affects glucose homeostasis have not been fully elucidated. We generated complementary lines of mice with either leptin receptor (Lepr) knockdown or reconstitution in adipose tissues using Cre-lox methodology. Lepr knockdown mice were modestly lighter and had lower plasma insulin concentrations following an oral glucose challenge compared to controls, despite similar insulin sensitivity. We rendered male mice diabetic using streptozotocin (STZ) and found that upon prolonged leptin therapy, Lepr knockdown mice had an accelerated decrease in blood glucose compared to controls that was associated with higher plasma concentrations of leptin and leptin receptor. Mice with transcriptional blockade of Lepr (LeprloxTB/loxTB) were obese and hyperglycemic and reconstitution of Lepr in adipose tissues of LeprloxTB/loxTB mice resulted in males reaching a higher maximal body weight. Although mice with adipose tissue Lepr reconstitution had lower blood glucose levels at several ages, their plasma insulin concentrations during an oral glucose test were elevated. Thus, attenuation or restoration of Lepr in adipocytes alters the plasma insulin profile following glucose ingestion, modifies the glucose-lowering effect of prolonged leptin therapy in insulin-deficient diabetes, and may modulate weight gain.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Experimental , Gene Knockdown Techniques , Receptors, Leptin , Adipose Tissue/pathology , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Mice , Mice, Transgenic , Receptors, Leptin/genetics , Receptors, Leptin/metabolism
10.
Diabetes ; 66(5): 1312-1321, 2017 05.
Article in English | MEDLINE | ID: mdl-28246290

ABSTRACT

Mesenchymal stem cells (MSCs) possess immunoregulatory, anti-inflammatory, and proangiogenic properties and, therefore, have the potential to improve islet engraftment and survival. We assessed the effect human bone marrow-derived MSCs have on neonatal porcine islets (NPIs) in vitro and determined islet engraftment and metabolic outcomes when cotransplanted in a mouse model. NPIs cocultured with MSCs had greater cellular insulin content and increased glucose-stimulated insulin secretion. NPIs were cotransplanted with or without MSCs in diabetic B6.129S7-Rag1tm1Mom/J mice. Blood glucose and weight were monitored until reversal of diabetes; mice were then given an oral glucose tolerance test. Islet grafts were assessed for the degree of vascularization and total cellular insulin content. Cotransplantation of NPIs and MSCs resulted in significantly earlier normoglycemia and vascularization, improved glucose tolerance, and increased insulin content. One experiment conducted with MSCs from a donor with an autoimmune disorder had no positive effects on transplant outcomes. Cotransplantation of human MSCs with NPIs demonstrated a beneficial metabolic effect likely as a result of earlier islet vascularization and improved islet engraftment. In addition, donor pathology of MSCs can influence the functional capacity of MSCs.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/therapy , Islets of Langerhans Transplantation , Islets of Langerhans/metabolism , Mesenchymal Stem Cell Transplantation , Neovascularization, Physiologic , Animals , Animals, Newborn , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/blood supply , Male , Mice , Swine , Transplants/blood supply
11.
Xenotransplantation ; 22(5): 336-44, 2015.
Article in English | MEDLINE | ID: mdl-26381492

ABSTRACT

The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.


Subject(s)
Clinical Trials as Topic/ethics , Diabetes Mellitus, Type 1/surgery , Islets of Langerhans Transplantation/methods , Transplantation, Heterologous/ethics , Animals , Humans , Islets of Langerhans Transplantation/ethics , Swine
12.
Biores Open Access ; 4(1): 188-97, 2015.
Article in English | MEDLINE | ID: mdl-26309795

ABSTRACT

Since the development of the Edmonton protocol, islet transplantation is increasingly encouraging as a treatment for type 1 diabetes. Strategies to ameliorate problems with the intraportal site include macroencapsulating the islets in diverse biomaterials. Characterization of these biomaterials is important to optimally tune the properties to support islets and promote vascularization. In this study, we characterize the cross-linker-dependent properties of collagen-based matrices containing chondroitin-6-sulfate, chitosan, and laminin, cross-linked with 7.5, 30, or 120 mM of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. The swelling ratio was found to be significantly negatively correlated with increasing cross-linker concentrations (p<0.0001; R2=0.718). The matrix released insulin in a reproducible logarithmic manner (R2 of 0.99 for all concentrations), demonstrating cross-linker-dependent control of drug release. The matrices with the highest cross-linker concentrations resisted degradation by collagenase for longer than the lowest concentrations (58.13%±2.22% vs. 13.69%±7.67%; p<0.05). Scanning electron microscopy images of the matrices revealed that the matrices had uniform topography and porosity, indicating efficient cross-linking and incorporation of the polymer components. Matrices were transplanted subcutaneously in naive BALB/c mice, and the number and size of vessels were quantified using von Willebrand factor staining; matrices with higher cross-linking concentrations had significantly larger capillaries at every time point up to 4 weeks after transplantation compared to the lowest cross-linker concentration group. CD31 staining visualized the capillaries at each time point. Taken together, these data show that this collagen-based matrix is reproducible with cross-linking-dependent properties that can be optimized to support vascularization and islet function.

13.
World J Diabetes ; 5(1): 59-68, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24567802

ABSTRACT

AIM: To minimize the expansion of pancreatic mesenchymal cells in vitro and confirm that ß-cell progenitors reside within the pancreatic epithelium. METHODS: Due to mesenchymal stem cell (MSC) expansion and overgrowth, progenitor cells within the pancreatic epithelium cannot be characterized in vitro, though ß-cell dedifferentiation and expansion of MSC intermediates via epithelial-mesenchymal transition (EMT) may generate ß-cell progenitors. Pancreatic epithelial cells from endocrine and non-endocrine tissue were expanded and differentiated in a novel pancreatic epithelial expansion medium supplemented with growth factors known to support epithelial cell growth (dexamethasone, epidermal growth factor, 3,5,3'-triiodo-l-thyronine, bovine brain extract). Cells were also infected with a single and dual lentiviral reporter prior to cell differentiation. Enhanced green fluorescent protein was controlled by the rat Insulin 1 promoter and the monomeric red fluorescent protein was controlled by the mouse PDX1 promoter. In combination with lentiviral tracing, cells expanded and differentiated in the pancreatic medium were characterized by flow cytometry (BD fluorescence activated cell sorting), immunostaining and real-time polymerase chain reaction (PCR) (7900HT Fast Realtime PCR System). RESULTS: In the presence of 10% serum MSCs rapidly expand in vitro while the epithelial cell population declines. The percentage of vimentin(+) cells increased from 22% ± 5.83% to 80.43% ± 3.24% (14 d) and 99.00% ± 0.0% (21 d), and the percentage of epithelial cells decreased from 74.71% ± 8.34% to 26.57% ± 9.75% (14 d) and 4.00% ± 1.53% (21 d), P < 0.01 for all time points. Our novel pancreatic epithelial expansion medium preserved the epithelial cell phenotype and minimized epithelial cell dedifferentiation and EMT. Cells expanded in our epithelial medium contained significantly less mesenchymal cells (vimentin(+)) compared to controls (44.87% ± 4.93% vs 95.67% ± 1.36%; P < 0.01). During cell differentiation lentiviral reporting demonstrated that, PDX1(+) and insulin(+) cells were localized within adherent epithelial cell aggregates compared to controls. Compared to starting islets differentiated cells had at least two fold higher gene expression of PDX1, insulin, PAX4 and RFX (P < 0.05). CONCLUSION: PDX1(+) cells were confined to adherent epithelial cell aggregates and not vimentin(+) cells (mesenchymal), suggesting that EMT is not a mechanism for generating pancreatic progenitor cells.

14.
Islets ; 5(5): 216-25, 2013.
Article in English | MEDLINE | ID: mdl-24262950

ABSTRACT

Islet transplantation is a promising treatment for Type 1 diabetes; however limitations of the intra-portal site and poor revascularization of islets must be overcome. We hypothesize that engineering a highly vascularized collagen-based construct will allow islet graft survival and function in alternative sites. In this study, we developed such a collagen-based biomaterial. Neonatal porcine islets (NPIs) were embedded in collagen matrices crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide containing combinations of chondroitin-6-sulfate, chitosan, and laminin, and compared with controls cultured in standard media. Islets were examined for insulin secretory activity after 24 h and 4 d and for apoptotic cell death and matrix integrity after 7 d in vitro. These same NPI/collagen constructs were transplanted subcutaneously in immunoincompetent B6.Rag-/- mice and then assessed for islet survival and vascularization. At all time points assessed during in vitro culture there were no significant differences in insulin secretory activity between control islets and those embedded in the collagen constructs, indicating that the collagen matrix had no adverse effect on islet function. Less cell death was observed in the matrix with all co-polymers compared with the other matrices tested. Immunohistochemical analysis of the grafts post-transplant confirmed the presence of intact insulin-positive islets; grafts were also shown to be vascularized by von Willebrand factor staining. This study demonstrates that a collagen, chondroitin-6-sulfate, chitosan, and laminin matrix supports islet function in vitro and moreover allows islet survival and vascularization post-transplantation; therefore, this bio-engineered vascularized construct is capable of supporting islet survival.


Subject(s)
Collagen , Islets of Langerhans Transplantation/methods , Islets of Langerhans Transplantation/physiology , Islets of Langerhans/blood supply , Tissue Culture Techniques/methods , Transplantation, Heterotopic/methods , Animals , Apoptosis , Bioengineering , Carbodiimides , Chitosan , Chondroitin Sulfates , Cross-Linking Reagents , Culture Media/chemistry , Graft Survival , Insulin/analysis , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/chemistry , Islets of Langerhans/metabolism , Laminin , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic , Succinimides , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...