Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(47): e2313835120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37971402

ABSTRACT

The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short ß-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Glutamine , Glutamine/metabolism , Transcriptional Activation , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , Binding Sites , Protein Binding/physiology
2.
Methods ; 52(1): 57-73, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20685617

ABSTRACT

Protein folding is a fundamental biological process of great significance for cell function and life-related processes. Surprisingly, very little is presently known about how proteins fold in vivo. The influence of the cellular environment is of paramount importance, as molecular chaperones, the ribosome, and the crowded medium affect both folding pathways and potentially even equilibrium structures. Studying protein folding in physiologically relevant environments, however, poses a number of technical challenges due to slow tumbling rates, low concentrations and potentially non-homogenous populations. Early work in this area relied on biological assays based on antibody recognition, proteolysis, and activity studies. More recently, it has been possible to directly observe the structure and dynamics of nascent polypeptides at high resolution by spectroscopic and microscopic techniques. The fluorescence depolarization decay of nascent polypeptides labeled with a small extrinsic fluorophore is a particularly powerful tool to gain insights into the dynamics of newly synthesized proteins. The fluorophore label senses both its own local mobility and the motions of the macromolecule to which it is attached. Fluorescence anisotropy decays can be measured both in the time and frequency domains. The latter mode of data collection is extremely convenient to capture the nanosecond motions in ribosome-bound nascent proteins, indicative of the development of independent structure and folding on the ribosome. In this review, we discuss the theory of fluorescence depolarization and its exciting applications to the study of the dynamics of nascent proteins in the cellular environment.


Subject(s)
Fluorescence Polarization/methods , Protein Folding , Ribosomes/metabolism , Molecular Chaperones/chemistry
3.
Anal Chem ; 82(11): 4637-43, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20397641

ABSTRACT

The growing interest in protein folding under physiologically relevant conditions has prompted investigations requiring direct comparisons between ribosome-bound and ribosome-released nascent proteins. Such studies, involving the ad hoc release of newly synthesized proteins from stalled ribosomes, demand a release agent able to produce nonaggregated native proteins and preserve the overall nature of the medium. Here, we explore hydroxylamine, a reactant rarely used to release nascent chains, and compare it to other ribosome-release agents: puromycin, RNase A/EDTA, and sodium hydroxide. Ribosome-bound nascent chains corresponding to the sequence of apoHmpH, the Escherichia coli N-terminal domain of Hmp, were used as a model system. Fluorescence anisotropy decays were employed to probe the self-association and overall physical properties of nascent proteins. Gel electrophoresis and RNA chip microfluidic capillary electrophoresis yielded information on the integrity of nascent peptidyl-tRNAs and ribosomes, respectively. Of the four reagents examined, only hydroxylamine releases nascent apoHmpH without causing extensive aggregation or degradation of the ribosome. Hydroxylamine does not introduce large hydrophobic C-terminal modifications and functions at nearly physiological pH. It is therefore a suitable reagent for the ad hoc release of nascent proteins from the ribosome.


Subject(s)
Molecular Chaperones/metabolism , Physical Phenomena , Ribosomes/metabolism , Edetic Acid/pharmacology , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Fluorescence Polarization , Hydroxylamine/pharmacology , Molecular Chaperones/biosynthesis , Molecular Chaperones/chemistry , Protein Biosynthesis/drug effects , Protein Folding/drug effects , Puromycin/pharmacology , Ribonuclease, Pancreatic/metabolism , Ribosomes/drug effects , Sodium Hydroxide/pharmacology , Ultracentrifugation
4.
Protein Sci ; 18(10): 2003-15, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19569194

ABSTRACT

We still know very little about how proteins achieve their native three-dimensional structure in vitro and in the cell. Folding studies as proteins emerge from the mega Dalton-sized ribosome pose special challenges due to the large size and complicated nature of the ribosome-nascent chain complex. This work introduces a combination of three-component analysis of fluorescence depolarization decays (including the presence of two local motions) and in-cone analysis of diffusive local dynamics to investigate the spatial constraints experienced by a protein emerging from the ribosomal tunnel. We focus on E. coli ribosomes and an all-alpha-helical nascent globin in the presence and absence of the cotranslationally active chaperones DnaK and trigger factor. The data provide insights on the dynamic nature and structural plasticity of ribosome-nascent chain complexes. We find that the sub-ns motions of the N-terminal fluorophore, reporting on the globin dynamics in the vicinity of the N terminus, are highly constrained both inside and outside the ribosomal tunnel, resulting in high-order parameters (>0.85) and small cone semiangles (<30 degrees ). The shorter globin chains buried inside the tunnel are less spatially constrained than those of a reference sequence from a natively unfolded protein, suggesting either that the two nascent chain sequences have a different secondary structure and therefore sample different regions of the tunnel or that the tunnel undergoes local structural adjustments to accommodate the globin sequence. Longer globins emerging out of the ribosomal tunnel are also found to have highly spatially constrained slow (ns) motions. There are no observable spectroscopic changes in the absence of bound chaperones.


Subject(s)
Escherichia coli Proteins/chemistry , Globins/chemistry , Molecular Chaperones/chemistry , Protein Biosynthesis/physiology , Ribosomes/chemistry , Fluorescence , HSP70 Heat-Shock Proteins/chemistry , Protein Folding
5.
ACS Chem Biol ; 3(9): 555-66, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18717565

ABSTRACT

Very little is known about the conformation of polypeptides emerging from the ribosome during protein biosynthesis. Here, we explore the dynamics of ribosome-bound nascent polypeptides and proteins in Escherichia coli by dynamic fluorescence depolarization and assess the population of cotranslationally active chaperones trigger factor (TF) and DnaK. E. coli cell-free technology and fluorophore-linked E. coli Met-tRNA f Met enable selective site-specific labeling of nascent proteins at the N-terminal methionine. For the first time, direct spectroscopic evidence captures the generation of independent nascent chain motions for a single-domain protein emerging from the ribosome (apparent rotational correlation time approximately 5 ns), during the intermediate and late stages of polypeptide elongation. Such motions are detected only for a sequence encoding a globular protein and not for a natively unfolded control, suggesting that the independent nascent chain dynamics may be a signature of folding-competent sequences. In summary, we observe multicomponent, severely rotationally restricted, and strongly chain length/sequence-dependent nascent chain dynamics.


Subject(s)
Apoproteins/biosynthesis , Escherichia coli/metabolism , Myoglobin/biosynthesis , Peptides/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Escherichia coli Proteins/physiology , Fluorescence Polarization , Peptidylprolyl Isomerase/physiology , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...