Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cancer Discov ; 1(1): 48-67, 2020 07.
Article in English | MEDLINE | ID: mdl-32974613

ABSTRACT

Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Humans , Killer Cells, Natural , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , MicroRNAs/genetics , Neoplastic Stem Cells , Protein Kinase Inhibitors/metabolism , Protein Phosphatase 2/genetics , Tumor Microenvironment/genetics
2.
J Clin Invest ; 123(10): 4144-57, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23999433

ABSTRACT

The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/ß-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and ß-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/ß-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Phosphatase 2/metabolism , Animals , Apoptosis , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm , Enzyme Activators/pharmacology , Fingolimod Hydrochloride , Fusion Proteins, bcr-abl/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/enzymology , Humans , Janus Kinase 2/metabolism , K562 Cells , Mice , Mice, Transgenic , Neoplastic Stem Cells/enzymology , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/metabolism
3.
Blood ; 122(17): 3034-44, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-23970380

ABSTRACT

As tyrosine kinase inhibitors (TKIs) fail to induce long-term response in blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL), novel therapies targeting leukemia-dysregulated pathways are necessary. Exportin-1 (XPO1), also known as chromosome maintenance protein 1, regulates cell growth and differentiation by controlling the nucleocytoplasmic trafficking of proteins and RNAs, some of which are aberrantly modulated in BCR-ABL1(+) leukemias. Using CD34(+) progenitors from CML, B-ALL, and healthy individuals, we found that XPO1 expression was markedly increased, mostly in a TKI-sensitive manner, in CML-BC and Ph(+) B-ALL. Notably, XPO1 was also elevated in Ph(-) B-ALL. Moreover, the clinically relevant XPO1 inhibitor KPT-330 strongly triggered apoptosis and impaired the clonogenic potential of leukemic, but not normal, CD34(+) progenitors, and increased survival of BCR-ABL1(+) mice, 50% of which remained alive and, mostly, became BCR-ABL1 negative. Moreover, KPT-330 compassionate use in a patient with TKI-resistant CML undergoing disease progression significantly reduced white blood cell count, blast cells, splenomegaly, lactate dehydrogenase levels, and bone pain. Mechanistically, KPT-330 altered the subcellular localization of leukemia-regulated factors including RNA-binding heterogeneous nuclear ribonucleoprotein A1 and the oncogene SET, thereby inducing reactivation of protein phosphatase 2A tumor suppressor and inhibition of BCR-ABL1 in CML-BC cells. Because XPO1 is important for leukemic cell survival, KPT-330 may represent an alternative therapy for TKI-refractory Ph(+) leukemias.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Hydrazines/pharmacology , Karyopherins/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/pharmacology , Adult , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , DNA-Binding Proteins , Drug Evaluation, Preclinical , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/genetics , Histone Chaperones/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Protein Transport , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Ribonucleoproteins/antagonists & inhibitors , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...