Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 68(5): 369-87, 2005 Mar 12.
Article in English | MEDLINE | ID: mdl-15799628

ABSTRACT

The acute and chronic effects of secondary-treated effluent from a New Zealand pulp and paper mill were assessed using both long-term adult and early life stage (ELS) laboratory exposures of rainbow trout. The relative impact of maternal exposure versus ELS exposure was assessed by a comparison of directly exposed eggs and larvae with the eggs and larvae of exposed adult trout that were reared in reference water. Rainbow trout were exposed to a secondary-treated mixed thermomechanical/bleached kraft mill effluent at a concentration of 15% or to reference water from the egg through to 320-d-old juveniles. The 2 adult rainbow trout exposures were undertaken with nominal concentrations of 10% and 12% treated effluent, respectively. There was no marked effect of water hardening with 15% effluent on fertility or survival of eggs to 16 d. In a subsequent exposure (with hardening in reference water), no significant effects were found on mortality to hatch, time to hatch, length at hatch, mortality to swim-up, mortality to 320 d, or deformity rate at hatch. At experimental termination (320 d), direct-exposed juveniles had smaller livers and reduced condition factor, likely due to differences in food consumption. In 2 subsequent consecutive experiments, exposure of adult trout to 10% and 12% effluent for 2 mo, followed by incubation of the fertilized eggs in reference water, produced no impact on fertility, survival to hatch, survival to swim-up, or length and weight of fry at swim-up. Exposure of adult trout to 12% treated effluent for 8 mo prior to egg fertilization also did not result in differing rates of fertility, mortality to hatch or mortality to swim-up. However, the 8-mo maternal exposure did result in swim-up fry that were significantly shorter and weighed less than the reference swim-up fry. This difference was directly attributable to smaller eggs in the 8-mo-exposed female trout. These results demonstrate that this pulp and paper mill effluent is more likely to elicit indirect impacts on progeny size through chronic exposure of adults to effluent during gonadal recrudescence rather than through direct exposure of early life stages to effluent.


Subject(s)
Gonads/growth & development , Industrial Waste , Oncorhynchus mykiss/growth & development , Water Pollutants, Chemical/toxicity , Animals , Body Size , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Female , Fertility/drug effects , Fertilization , Gonads/drug effects , Larva/growth & development , Male , Maternal Exposure , Paper , Swimming
2.
Environ Toxicol Chem ; 22(7): 1448-56, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12836968

ABSTRACT

The androgenic potential of a New Zealand pulp and paper mill effluent was measured by applying a combination of in vitro and in vivo bioassays with mosquitofish (Gambusia affinis) and goldfish (Carassius auratus). The in vivo method assessed the rate of gonopodial development (masculinization) and alterations from normal reproductive behavior in adult female mosquitofish exposed for 21 d to untreated or secondary-treated pulp mill effluent. A second in vivo mosquitofish exposure tested the effect of glass-fiber (type C) filtration of secondary-treated effluent on rates of expression of the same endpoints. Extractable organics analyses of effluents and extracts thereof were conducted. Mosquitofish demonstrated significant masculinization on exposure to either treated or untreated effluent; the frequency of gonopodial development was reduced with effluent secondary-treatment. Male mating behavior was observed in the masculinized adult females. Glass-fiber (type F) filtration of the treated effluent eliminated the masculinizing effect, suggesting that the bioactive compounds were associated with the suspended solids. The in vitro method measured the binding of compounds within a treated thermomechanical/bleached kraft effluent extract to androgen receptors contained in goldfish testis cytosol. Exposure to extracts of either the particulate (glass-fiber filtered) or the dissolved organic fraction of the effluent produced significant binding (as indicated by the displacement of radiolabeled testosterone) to the androgen receptor in goldfish gonadal tissue. Thus, the dissolved organics extract of the treated effluent contained compounds androgenic to goldfish in vitro but not to mosquitofish in vivo. The combined in vitro and in vivo data suggest that the effluent in question could exert effects on the reproductive physiology of fishes through an androgenic mechanism. The androgenic compounds androstenedione and testosterone were not detected in the extracts used for the in vitro component of this study.


Subject(s)
Cyprinodontiformes/growth & development , Environmental Exposure , Goldfish/growth & development , Gonads/drug effects , Industrial Waste , Receptors, Androgen/drug effects , Sex Differentiation/drug effects , Water Pollutants, Chemical/poisoning , Androgens/poisoning , Animals , Female , Gonads/growth & development , Male , Paper
3.
Environ Toxicol Chem ; 21(11): 2338-47, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12389912

ABSTRACT

Rainbow trout were exposed to a secondary treated, thermomechanical/bleached kraft pulp and paper effluent in 12,000-L, flow-through exposure tanks at an environmental research facility located at a pulp and paper mill in Kawerau, New Zealand. Trout (age, 2+ years) were obtained from a local hatchery and exposed either to upstream river water or a nominal concentration of 12% (v/v) effluent diluted in upstream river water. Three treatment groups were used: Effluent exposure that started approximately three months before gonadal growth (eight-month total exposure), effluent exposure that started approximately halfway through gonadal development (two-month total exposure), and trout exposed to reference water alone for the total duration of the experiment. Trout were sacrificed just before spawning; exposure, growth, and reproductive endpoints were assessed during and at the termination of the experiment. Reduction in growth was observed in both sexes in the eight-month treatment group relative to the river water reference treatment group. No differences were observed in condition factor or liver size in either treatment. Females in the eight-month exposure group also had significantly lower ovary weight. The two-month exposure group showed no differences from the reference group in growth or somatic indices. Estradiol and testosterone were reduced in blood samples taken from the eight-month exposure group by four months into the experiment as compared to the reference treatment. Steroid and vitellogenin levels in individual female trout from this treatment were significantly correlated with gonadosomatic indices (GSI) measured at the termination of the experiment. The GSI was not correlated strongly or consistently with pregnenolone, nor were any treatment-related pregnenolone differences observed, indicating that the steroid hormone reductions likely were not related to cholesterol side-chain cleavage. Male trout showed significant induction of vitellogenin and lower 11-ketotestosterone during the experiment (only the eight-month group was examined), but this did not result in any significant differences in testes development. Thus, this study has shown an impact of pulp mill effluent exposure on the reproductive physiology of female trout that appeared to be hormonally mediated. Furthermore, the effect could only be manifest when the exposure was initiated before the start of gonad development.


Subject(s)
Environmental Exposure , Industrial Waste/adverse effects , Oncorhynchus mykiss/growth & development , Reproduction/drug effects , Animals , Female , Gonadal Steroid Hormones/blood , Gonads/drug effects , Gonads/growth & development , Liver/drug effects , Liver/growth & development , Male , New Zealand , Paper , Sex Factors , Spleen/drug effects , Spleen/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...