Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 59(4): 170-182, 2024.
Article in English | MEDLINE | ID: mdl-38425027

ABSTRACT

For the European risk assessment (RA) for soil organisms exposed to plant protection products (PPPs) endpoints from ecotoxicological laboratory studies are compared with predicted environmental concentrations in soil (PECSOIL) at first tier. A safety margin must be met; otherwise, a higher tier RA is triggered (usually soil organism field studies). A new tiered exposure modeling guidance was published by EFSA to determine PECSOIL. This work investigates its potential impact on future soil RA. PECSOIL values for >50 active substances and metabolites were calculated and compared with the respective endpoints for soil organisms to calculate the RA failure rate. Compared to the current (FOCUS) exposure modeling, PECSOIL values for all EU regulatory zones considerably increased, e.g., resulting in active substance RA failure rates of 67%, 58% and 36% for modeling Tier-1, Tier-2 and Tier-3A, respectively. The main driving factors for elevated PECSOIL were soil bulk density, crop interception and wash-off, next to obligatory modeling and scenario adjustment factors. Spatial PECSOIL scenario selection procedures result in agronomically atypical soil characteristics (e.g., soil bulk density values in Tier-3A scenarios far below typical European agricultural areas). Consequently, exposure modeling and ecotoxicological study characteristics are inconsistent, which hinders scientifically reasonable comparison of both in the RA.


Subject(s)
Environmental Monitoring , Soil , Environmental Monitoring/methods , Agriculture , Ecotoxicology , Risk Assessment/methods
2.
Environ Toxicol Chem ; 41(8): 1808-1823, 2022 08.
Article in English | MEDLINE | ID: mdl-35678214

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) perform key soil ecosystem services and, because of their symbiotic relationship with plant roots, may be exposed to the plant protection products (PPPs) applied to soils and crops. In 2017, the European Food Safety Authority (EFSA) released a scientific opinion addressing the state of the science on risk assessment of PPPs for in-soil organisms, recommending the inclusion of AMF ecotoxicological testing in the PPP regulatory process. However, it is not clear how this can be implemented in a tiered, robust, and ecologically relevant manner. Through a critical review of current literature, we examine the recommendations made within the EFSA report and the methodologies available to integrate AMF into the PPP risk assessment and provide perspective and commentary on their agronomic and ecological relevance. We conclude that considerable research questions remain to be addressed prior to the inclusion of AMF into the in-soil organism risk assessment, many of which stem from the unique challenges associated with including an obligate symbiont within the PPP risk assessment. Finally, we highlight critical knowledge gaps and the further research required to enable development of relevant, reliable, and robust scientific tests alongside pragmatic and scientifically sound guidance to ensure that any future risk-assessment paradigm is adequately protective of the ecosystem services it aims to preserve. Environ Toxicol Chem 2022;41:1808-1823. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Magnoliopsida , Mycorrhizae , Ecosystem , Fungi , Plant Roots/microbiology , Soil/chemistry , Soil Microbiology
3.
Integr Environ Assess Manag ; 18(5): 1423-1433, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34878731

ABSTRACT

Intact soil food webs are pivotal to maintaining essential soil functions, such as carbon recycling, sequestering, and biomass production. Although the functional role of micro- (e.g., bacteria and fungi) and macrofauna (e.g., earthworms) is comparatively well established, the importance of the mesofauna community (e.g., abundance and diversity of Acari and Collembola) in maintaining soil functionality is less clear. We investigated this question in a six-month field experiment in arable soil by actively manipulating mesofauna abundance and biodiversity through the application of two legacy insecticides (lindane and methamidophos) at sufficiently high doses to reduce mesofauna abundance (well above previously registered application rates; 2.5 and 7.5 kg a.s./ha for lindane, and 0.6 and 3 kg a.s./ha for methamidophos) and measure the impact on organic matter degradation. Our results demonstrate that both insecticides had reduced Collembola and Acari abundances by up to 80% over the study's six-month duration. In addition, we observed less pronounced and more complex changes in mesofauna biodiversity over time. These included insecticide-dependent temporal fluctuations (both reduction and increase) for different estimates (indices) of local (alpha)-diversity over time and no lasting impact for most estimates after six months. Even at these exceptionally high field rates, Collembola and Acari diversity was observed to generally recover by six months. In contrast, considering organic matter breakdown, we found no evidence of a treatment-related effect. These results suggest that organic matter breakdown in arable soils is likely driven by other trophic levels (e.g., microorganisms or earthworms) with only a limited influence of the mesofauna community. We discuss these findings with regard to their implications for our current understanding of soil food web function and future European soil risk assessments. Integr Environ Assess Manag 2022;18:1423-1433. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Arthropods , Insecticides , Oligochaeta , Animals , Biodiversity , Food Chain , Hexachlorocyclohexane , Soil/chemistry
4.
Environ Toxicol Chem ; 29(8): 1821-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20821637

ABSTRACT

Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols.


Subject(s)
Behavior, Animal/drug effects , Benzimidazoles/toxicity , Carbamates/toxicity , Fungicides, Industrial/toxicity , Oligochaeta/drug effects , Rain , Animals , Benzimidazoles/analysis , Benzimidazoles/chemistry , Carbamates/analysis , Carbamates/chemistry , Fungicides, Industrial/analysis , Fungicides, Industrial/chemistry , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil Pollutants/toxicity
5.
Ecotoxicol Environ Saf ; 73(6): 1424-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20580088

ABSTRACT

Carbendazim-amended soil was placed above or below unamended soil. Control tests comprised two layers of unamended soil. Allolobophora chlorotica earthworms were added to either the upper or the unamended soil. After 72 h vertical distributions of earthworms were compared between control and carbendazim-amended experiments. Earthworm distributions in the carbendazim-amended test containers differed significantly from the 'normal' distribution observed in the control tests. In the majority of the experiments, earthworms significantly altered their burrowing behaviour to avoid carbendazim. However, when earthworms were added to an upper layer of carbendazim-amended soil they remained in this layer. This non-avoidance is attributed to (1) the earthworms' inability to sense the lower layer of unamended soil and (2) the toxic effect of carbendazim inhibiting burrowing. Earthworms modified their burrowing behaviour in response to carbendazim in the soil. This may explain anomalous results observed in pesticide field trials when carbendazim is used as a control substance.


Subject(s)
Behavior, Animal/drug effects , Benzimidazoles/toxicity , Carbamates/toxicity , Environmental Monitoring/methods , Oligochaeta/drug effects , Soil Pollutants/toxicity , Soil/analysis , Animals , Oligochaeta/physiology , Soil/standards , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...