Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 172(5): 782-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26763766

ABSTRACT

Diamond-Blackfan anaemia (DBA) is an inherited disease characterized by pure erythroid aplasia that has been tagged as a 'ribosomopathy'. We report a multi-centre study focused on the analysis of rRNA processing of 53 Italian DBA patients using capillary electrophoresis analysis of rRNA maturation of the 40S and 60S ribosomal subunits. The ratio of 28S/18S rRNA was higher in patients with mutated ribosomal proteins (RPs) of the small ribosomal subunit. In contrast, patients with mutated RPs of the large ribosomal subunit (RPLs) had a lower 28S/18S ratio. The assay reported here would be amenable for development as a diagnostic tool.


Subject(s)
Anemia, Diamond-Blackfan/diagnosis , RNA, Ribosomal/genetics , Anemia, Diamond-Blackfan/genetics , Case-Control Studies , Electrophoresis, Capillary/methods , Gene Deletion , Humans , Mutation
2.
Cancer Metab ; 2(1): 2, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24451478

ABSTRACT

BACKGROUND: Unlike glycolytic enzymes that directly catabolize glucose to pyruvate, the family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFBs) control the conversion of fructose-6-phosphate to and from fructose-2,6-bisphosphate, a key regulator of the glycolytic enzyme phosphofructokinase-1 (PFK-1). One family member, PFKFB3, has been shown to be highly expressed and activated in human cancer cells, and derivatives of a PFKFB3 inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), are currently being developed in clinical trials. However, the effectiveness of drugs such as 3PO that target energetic pathways is limited by survival pathways that can be activated by reduced ATP and nutrient uptake. One such pathway is the process of cellular self-catabolism termed autophagy. We hypothesized that the functional glucose starvation induced by inhibition of PFKFB3 in tumor cells would induce autophagy as a pro-survival mechanism and that inhibitors of autophagy could increase the anti-tumor effects of PFKFB3 inhibitors. RESULTS: We found that selective inhibition of PFKFB3 with either siRNA transfection or 3PO in HCT-116 colon adenocarcinoma cells caused a marked decrease in glucose uptake simultaneously with an increase in autophagy based on LC3-II and p62 protein expression, acridine orange fluorescence of acidic vacuoles and electron microscopic detection of autophagosomes. The induction of autophagy caused by PFKFB3 inhibition required an increase in reactive oxygen species since N-acetyl-cysteine blocked both the conversion of LC3-I to LC3-II and the increase in acridine orange fluorescence in acidic vesicles after exposure of HCT-116 cells to 3PO. We speculated that the induction of autophagy might protect cells from the pro-apoptotic effects of 3PO and found that agents that disrupt autophagy, including chloroquine, increased 3PO-induced apoptosis as measured by double staining with Annexin V and propidium iodide in both HCT-116 cells and Lewis lung carcinoma (LLC) cells. Chloroquine also increased the anti-growth effect of 3PO against LLCs in vivo and resulted in an increase in apoptotic cells within the tumors. CONCLUSIONS: We conclude that PFKFB3 inhibitors suppress glucose uptake, which in turn causes an increase in autophagy. The addition of selective inhibitors of autophagy to 3PO and its more potent derivatives may prove useful as rational combinations for the treatment of cancer.

3.
Genes Dev ; 25(9): 898-900, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21536731

ABSTRACT

Mutations in the human SBDS (Shwachman-Bodian-Diamond syndrome) gene are the most common cause of Shwachman-Diamond syndrome, an inherited bone marrow failure syndrome. In this issue of Genes & Development, Finch and colleagues (pp. 917-929) establish that SBDS functions in ribosome synthesis by promoting the recycling of eukaryotic initiation factor 6 (eIF6) in a GTP-dependent manner. This work supports the idea that a ribosomopathy may underlie this syndrome.


Subject(s)
Ribosomes/pathology , Animals , Bone Marrow Diseases/blood , Bone Marrow Diseases/genetics , Bone Marrow Diseases/physiopathology , Bone and Bones/pathology , Disease Models, Animal , Exocrine Pancreatic Insufficiency/blood , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/physiopathology , Humans , Lipomatosis , Peptide Elongation Factor G/metabolism , Phosphorylation , Proteins/genetics , Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Shwachman-Diamond Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...