Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 10(1): 10966, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620928

ABSTRACT

Impatiens glandulifera or Himalayan balsam (HB), is an invasive alien weed throughout the British Isles (BI). Classical biological control of HB in the BI using a rust fungus from the Himalayan native range was implemented in 2014. However, not all HB populations are susceptible to the two rust strains currently released. Additional strains are needed that infect resistant populations in order to achieve successful control. These are best sourced from the historical collecting sites. A molecular analysis was conducted using six chloroplast DNA sequences from leaf material from across the BI and the native range. Herbarium samples collected in the Himalayas between 1881 and 1956 were also included. Phylogenetic analyses resulted in the separation of two distinct groups, one containing samples from the BI and the native range, and the other from the BI only; suggesting that HB was introduced into the BI on at least two occasions. The former group is composed of two subgroups, indicating a third introduction. Ten and 15 haplotypes were found in the introduced and native range respectively, and with two of these found in both regions. Results show where to focus future surveys in the native range to find more compatible rust strains.


Subject(s)
DNA, Chloroplast/genetics , Impatiens/genetics , Introduced Species , Biological Control Agents/therapeutic use , Haplotypes , Impatiens/classification , Impatiens/microbiology , Phylogeny , Plant Weeds/genetics , Plant Weeds/microbiology , Puccinia/pathogenicity , United Kingdom
2.
PeerJ ; 8: e8739, 2020.
Article in English | MEDLINE | ID: mdl-32231875

ABSTRACT

BACKGROUND: Himalayan balsam Impatiens glandulifera Royle (Balsaminaceae) is a highly invasive annual species native of the Himalayas. Biocontrol of the plant using the rust fungus Puccinia komarovii var. glanduliferae is currently being implemented, but issues have arisen with matching UK weed genotypes with compatible strains of the pathogen. To support successful biocontrol, a better understanding of the host weed population, including potential sources of introductions, of Himalayan balsam is required. METHODS: In this molecular study, two new complete chloroplast (cp) genomes of I. glandulifera were obtained with low coverage whole genome sequencing (genome skimming). A 125-year-old herbarium specimen (HB92) collected from the native range was sequenced and assembled and compared with a 2-year-old specimen from UK field plants (HB10). RESULTS: The complete cp genomes were double-stranded molecules of 152,260 bp (HB92) and 152,203 bp (HB10) in length and showed 97 variable sites: 27 intragenic and 70 intergenic. The two genomes were aligned and mapped with two closely related genomes used as references. Genome skimming generates complete organellar genomes with limited technical and financial efforts and produces large datasets compared to multi-locus sequence typing. This study demonstrates the suitability of genome skimming for generating complete cp genomes of historic herbarium material. It also shows that complete cp genomes are solid genetic markers for population studies that could be linked to plant evolution and aid with targeting native range and natural enemy surveys for biocontrol of invasive species.

3.
Mycologia ; 97(4): 935-47, 2005.
Article in English | MEDLINE | ID: mdl-16457363

ABSTRACT

Three microcyclic rust species were collected during surveys of the perennial asteraceous vine Mikania micrantha (Eupatorieae: Asteraceae) throughout its native range in the Neotropics but were absent in its invasive range in Asia. The commonest species, Puccinia spegazzinii with brown telioid telia, occurred wherever M. micrantha was found in South and Central America including the Caribbean island of Trinidad. Dietelia portoricensis, with occasional vestigial spermogonia and grayish-white to pale yellow columnar aecioid telia, was collected only in Costa Rica; while D. mesoamericana sp. nov., apparently restricted to Mesoamerica, can be distinguished by its abundant, yellowish-orange, fertile spermogonia, yellow to pale brown telial columns, larger teliospores, and 4-spored rather than 2-spored metabasidia. The fact that all three species share a fundamentally similar symptomatology suggests a common origin.


Subject(s)
Basidiomycota/classification , Basidiomycota/pathogenicity , Mikania/microbiology , Pest Control, Biological , Asia , Basidiomycota/physiology , Mexico , Mikania/growth & development , Peru
4.
Cryo Letters ; 24(1): 43-8, 2003.
Article in English | MEDLINE | ID: mdl-12644852

ABSTRACT

The rust fungus Puccinia spegazzinii (Basidiomycotina: Uredinales) has been identified as a potential classical biological control agent for the invasive weed Mikania micrantha (Asteraceae). Long-term, live storage of this pathogen is required for reference. As biotrophs, almost all rusts species cannot be preserved by traditional cryopreservation protocols, which rely on in vitro culture techniques. In addition, the embedded teliospores and delicate basidiospores of this microcyclic rust are not amenable to direct plunge freezing. Continuous culture of the rust on living plants is both laborious and expensive, so a variety of approaches for cryopreservation and storage were tested. These methods included traditional approaches to fungal cryopreservation such as variation of cooling rate regime and alginate encapsulation techniques. However, an in situ cryopreservation technique was the only method identified as having any potential for the long-term cryopreservation of the 10 isolates tested. Material from either petiole or stem tissue remained viable after cryopreservation, determined by the ability of the material to produce basidiospores. However, despite great progress being made in developing an optimal cryopreservation method, infection of the host plant by basidiospores produced from previously cryopreserved teliospores, embedded in leaf petioles, was not achieved.


Subject(s)
Basidiomycota , Cryopreservation
SELECTION OF CITATIONS
SEARCH DETAIL
...