Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Ecol ; 12(1): 32, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664784

ABSTRACT

BACKGROUND: The wild pig (Sus scrofa) is an exotic species that has been present in the southeastern United States for centuries yet continues to expand into new areas dominated by bottomland and upland forests, the latter of which are less commonly associated with wild pigs. Here, we aimed to investigate wild pig movement and space use attributes typically used to guide wild pig management among multiple spatiotemporal scales. Our investigation focused on a newly invaded landscape dominated by bottomland and upland forests. METHODS: We examined (1) core and total space use using an autocorrelated kernel density estimator; (2) resource selection patterns and hot spots of space use in relation to various landscape features using step-selection analysis; and (3) daily and hourly differences in movement patterns between non-hunting and hunting seasons using generalized additive mixed models. RESULTS: Estimates of total space use among wild pigs (n = 9) were smaller at calculated core (1.2 ± 0.3 km2) and 90% (5.2 ± 1.5 km2) isopleths than estimates reported in other landscapes in the southeastern United States, suggesting that wild pigs were able to meet foraging, cover, and thermoregulatory needs within smaller areas. Generally, wild pigs selected areas closer to herbaceous, woody wetlands, fields, and perennial streams, creating corridors of use along these features. However, selection strength varied among individuals, reinforcing the generalist, adaptive nature of wild pigs. Wild pigs also showed a tendency to increase movement from fall to winter, possibly paralleling increases in hard mast availability. During this time, there were also increases in anthropogenic pressures (e.g. hunting), causing movements to become less diurnal as pressure increased. CONCLUSIONS: Our work demonstrates that movement patterns by exotic generalists must be understood across individuals, the breadth of landscapes they can invade, and multiple spatiotemporal scales. This improved understanding will better inform management strategies focused on curbing emerging invasions in novel landscapes, while also protecting native natural resources.

2.
J Anim Ecol ; 89(12): 2763-2776, 2020 12.
Article in English | MEDLINE | ID: mdl-32779181

ABSTRACT

Home ranging is a near-ubiquitous phenomenon in the animal kingdom. Understanding the behavioural mechanisms that give rise to observed home range patterns is thus an important general question, and mechanistic home range analysis (MHRA) provides the tools to address it. However, such analysis has hitherto been principally restricted to scent-marking territorial animals, so its potential breadth of application has not been tested. Here, we apply MHRA to a population of long-tailed tits Aegithalos caudatus, a non-territorial passerine, in the non-breeding season where there is no clear 'central place' near which birds need to remain. The aim is to uncover the principal movement mechanisms underlying observed home range formation. Our foundational models consist of memory-mediated conspecific avoidance between flocks, combined with attraction to woodland. These are then modified to incorporate the effects of flock size and relatedness (i.e. kinship), to uncover the effect of these on the mechanisms of home range formation. We found that a simple model of spatial avoidance, together with attraction to the central parts of woodland areas, accurately captures long-tailed tit home range patterns. Refining these models further, we show that the magnitude of spatial avoidance by a flock is negatively correlated to both the relative size of the flock (compared to its neighbour) and the relatedness of the flock with its neighbour. Our study applies MHRA beyond the confines of scent-marking, territorial animals, so paves the way for much broader taxonomic application. These could potentially help uncover general properties underlying the emergence of animal space use patterns. This is also the first study to apply MHRA to questions of relatedness and flock size, thus broadening the potential possible applications of this suite of analytic techniques.


Subject(s)
Homing Behavior , Passeriformes , Animals , Movement , Pheromones , Territoriality
SELECTION OF CITATIONS
SEARCH DETAIL
...