Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 1(2): 66-72, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30283882

ABSTRACT

Previous work has shown that the soluble murine BMPR1A-fusion protein (mBMPR1A-mFc) binds to BMP2 and BMP4 with high affinity, preventing downstream signaling. Further, treatment of intact and ovariectomized mice with mBMPR1A-mFc leads to increased bone mass, and improved bone microarchitecture and strength, via increased bone formation and reduced resorption. In this study, we tested the effects of mBMPR1A-mFc on disuse-induced bone loss caused by 21 days of hindlimb unloading (HLU) via tail suspension versus cage controls (CONs). Adult female C57BL/6J mice (12 weeks old) were assigned to one of four groups (n = 10 each): CON-VEH; CON-mBMPR1A-mFc; HLU-VEH; and HLU-mBMPR1A-mFc. Mice were injected subcutaneously with VEH or mBMPR1A-mFc (4.5 mg/kg, 2×/week). Leg BMD declined in the HLU-VEH group (-5.3% ± 1.3%), whereas it was unchanged in HLU-mBMPR1A-mFc (-0.3% ± 0.9%, p < 0.05 versus HLU-VEH). Leg BMD increased significantly more in CON-mBMPR1A-mFc than CON-VEH (10.2% ± 0.6% versus 4.4% ± 0.8%). In the femur, trabecular, and cortical bone microarchitecture was worse in the HLU-VEH compared to CON-VEH mice, whereas mBMPR1A-mFc treatment for 3 weeks led to greater Tb.BV/TV, Tb.Th, and midshaft Ct.Th in both the HLU and CON groups compared to comparable VEH-treated counterparts (p < 0.05). HLU-mBMPR1A-mFc mice also had 21% greater failure load (p < 0.05) compared to their VEH-treated counterparts. Dynamic histomorphometry indicated that treatment with mBMPR1A-mFc led to significantly greater mineralizing surface and mineral apposition rate, resulting in a 3.5-fold and fivefold higher bone formation rate in the mBMPR1A-mFc-treated CON and HLU animals versus VEH groups, respectively. mBMPR1A-mFc-treated mice had a similar osteoblast surface but significantly lower osteoclast surface than VEH-treated animals in both the CON and HLU groups. Altogether, these findings suggest that treatment with the soluble BMPR1A fusion protein may be useful for maintenance of skeletal integrity in the setting of disuse-induced bone loss.

2.
Calcif Tissue Int ; 94(3): 327-37, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24240478

ABSTRACT

Bone receives mechanical stimulation from two primary sources, muscle contractions and external gravitational loading; but the relative contribution of each source to skeletal health is not fully understood. Understanding the most effective loading for maintaining bone health has important clinical implications for prescribing physical activity for the treatment or prevention of osteoporosis. Therefore, we investigated the relative effects of muscle paralysis and reduced gravitational loading on changes in muscle mass, bone mineral density, and microarchitecture. Adult female C57Bl/6J mice (n = 10/group) underwent one of the following: unilateral botulinum toxin (BTX) injection of the hind limb, hind limb unloading (HLU), both unilateral BTX injection and HLU, or no intervention. BTX and HLU each led to significant muscle and bone loss. The effect of BTX was diminished when combined with HLU, though generally the leg that received the combined intervention (HLU+BTX) had the most detrimental changes in bone and muscle. We found an indirect effect of BTX affecting the uninjected (contralateral) leg that led to significant decreases in bone mineral density and deficits in muscle mass and bone architecture relative to the untreated controls; the magnitude of this indirect BTX effect was comparable to the direct effect of BTX treatment and HLU. Thus, while it was difficult to definitively conclude whether muscle force or external gravitational loading contributes more to bone maintenance, it appears that BTX-induced muscle paralysis is more detrimental to muscle and bone than HLU.


Subject(s)
Bone Diseases, Metabolic/chemically induced , Bone and Bones , Botulinum Toxins/toxicity , Hindlimb Suspension , Muscle, Skeletal , Animals , Bone and Bones/drug effects , Botulinum Toxins/administration & dosage , Disease Models, Animal , Female , Hindlimb Suspension/methods , Injections, Intramuscular/methods , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects
3.
J Bone Miner Res ; 28(4): 875-85, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23165526

ABSTRACT

Although the musculoskeletal system is known to be sensitive to changes in its mechanical environment, the relationship between functional adaptation and below-normal mechanical stimuli is not well defined. We investigated bone and muscle adaptation to a range of reduced loading using the partial weight suspension (PWS) system, in which a two-point harness is used to offload a tunable amount of body weight while maintaining quadrupedal locomotion. Skeletally mature female C57Bl/6 mice were exposed to partial weight bearing at 20%, 40%, 70%, or 100% of body weight for 21 days. A hindlimb unloaded (HLU) group was included for comparison in addition to age-matched controls in normal housing. Gait kinematics was measured across the full range of weight bearing, and some minor alterations in gait from PWS were identified. With PWS, bone and muscle changes were generally proportional to the degree of unloading. Specifically, total body and hindlimb bone mineral density, calf muscle mass, trabecular bone volume of the distal femur, and cortical area of the femur midshaft were all linearly related to the degree of unloading. Even a load reduction to 70% of normal weight bearing was associated with significant bone deterioration and muscle atrophy. Weight bearing at 20% did not lead to better bone outcomes than HLU despite less muscle atrophy and presumably greater mechanical stimulus, requiring further investigation. These data confirm that the PWS model is highly effective in applying controllable, reduced, long-term loading that produces predictable, discrete adaptive changes in muscle and bone of the hindlimb.


Subject(s)
Bone Density , Bone and Bones/anatomy & histology , Bone and Bones/physiology , Muscle, Skeletal/anatomy & histology , Animals , Biomechanical Phenomena , Body Weight , Corticosterone/metabolism , Feces/chemistry , Female , Femur/anatomy & histology , Femur/physiology , Gait , Hindlimb Suspension , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Organ Size , Weight-Bearing
4.
J Bone Miner Res ; 28(4): 865-74, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23109229

ABSTRACT

Sclerostin, a product of the SOST gene produced mainly by osteocytes, is a potent negative regulator of bone formation that appears to be responsive to mechanical loading, with SOST expression increasing following mechanical unloading. We tested the ability of a murine sclerostin antibody (SclAbII) to prevent bone loss in adult mice subjected to hindlimb unloading (HLU) via tail suspension for 21 days. Mice (n = 11-17/group) were assigned to control (CON, normal weight bearing) or HLU and injected with either SclAbII (subcutaneously, 25 mg/kg) or vehicle (VEH) twice weekly. SclAbII completely inhibited the bone deterioration due to disuse, and induced bone formation such that bone properties in HLU-SclAbII were at or above values of CON-VEH mice. For example, hindlimb bone mineral density (BMD) decreased -9.2% ± 1.0% in HLU-VEH, whereas it increased 4.2% ± 0.7%, 13.1% ± 1.0%, and 30.6% ± 3.0% in CON-VEH, HLU-SclAbII, and CON-SclAbII, respectively (p < 0.0001). Trabecular bone volume, assessed by micro-computed tomography (µCT) imaging of the distal femur, was lower in HLU-VEH versus CON-VEH (p < 0.05), and was 2- to 3-fold higher in SclAbII groups versus VEH (p < 0.001). Midshaft femoral strength, assessed by three-point bending, and distal femoral strength, assessed by micro-finite element analysis (µFEA), were significantly higher in SclAbII versus VEH-groups in both loading conditions. Serum sclerostin was higher in HLU-VEH (134 ± 5 pg/mL) compared to CON-VEH (116 ± 6 pg/mL, p < 0.05). Serum osteocalcin was decreased by hindlimb suspension and increased by SclAbII treatment. Interestingly, the anabolic effects of sclerostin inhibition on some bone outcomes appeared to be enhanced by normal mechanical loading. Altogether, these results confirm the ability of SclAbII to abrogate disuse-induced bone loss and demonstrate that sclerostin antibody treatment increases bone mass by increasing bone formation in both normally loaded and underloaded environments.


Subject(s)
Antibodies/pharmacology , Bone and Bones/pathology , Glycoproteins/immunology , Adaptor Proteins, Signal Transducing , Animals , Biomarkers/metabolism , Biomechanical Phenomena/drug effects , Body Weight/drug effects , Bone Density/drug effects , Bone Remodeling/drug effects , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/physiopathology , Female , Femur/diagnostic imaging , Femur/drug effects , Femur/pathology , Femur/physiopathology , Finite Element Analysis , Glycoproteins/blood , Hindlimb Suspension , Intercellular Signaling Peptides and Proteins , Mice, Inbred C57BL , Muscles/drug effects , Muscles/pathology , Organ Size/drug effects , Weight-Bearing/physiology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...