Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 10(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208695

ABSTRACT

Three dimensional (3D) printing allows additive manufacturing of patient specific scaffolds with varying pore size and geometry. Such porous scaffolds, made of 3D-printable bone-like calcium phosphate cement (CPC), are suitable for bone augmentation due to their benefit for osteogenesis. Their pores allow blood-, bone- and stem cells to migrate, colonize and finally integrate into the adjacent tissue. Furthermore, the pore size affects the scaffold's stability. Since scaffolds in maxillofacial surgery have to withstand high forces within the jaw, adequate mechanical properties are of high clinical importance. Although many studies have investigated CPC for bone augmentation, the ideal porosity for specific indications has not been defined yet. We investigated 3D printed CPC cubes with increasing pore sizes and different printing orientations regarding cell migration and mechanical properties in comparison to commercially available bone substitutes. Furthermore, by investigating clinical cases, the scaffolds' designs were adapted to resemble the in vivo conditions as accurately as possible. Our findings suggest that the pore size of CPC scaffolds for bone augmentation in maxillofacial surgery necessarily needs to be adapted to the surgical site. Scaffolds for sites that are not exposed to high forces, such as the sinus floor, should be printed with a pore size of 750 µm to benefit from enhanced cell infiltration. In contrast, for areas exposed to high pressures, such as the lateral mandible, scaffolds should be manufactured with a pore size of 490 µm to guarantee adequate cell migration and in order to withstand the high forces during the chewing process.

2.
Case Rep Dent ; 2020: 8831862, 2020.
Article in English | MEDLINE | ID: mdl-33163237

ABSTRACT

By using modern digitalization techniques, an existing denture can be digitized and aid the provision of a new implant-supported denture according to a fully digital workflow. This includes fully navigated implant surgery and results in an immediately provided prosthetic restoration. However, even with the current digital workflow, it is challenging to achieve a definitive prosthetic restoration in a single treatment session. In order to achieve a definitive denture in as few treatment sessions as possible, we have implemented the digital abutment test. This test modified the existing data set and determined the final restoration. In the present case, the preexisting maxillary removable complete denture was converted into a fixed immediate restoration using the fully digital workflow. The workflow is divided into two treatment phases, each with three treatment sessions, where part of the second phase involves an innovative digital abutment check. The illustrated case shows an effective use of current digital possibilities. Special attention was also paid to a minimally invasive course of therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...