Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Neurol ; 14: 1092887, 2023.
Article in English | MEDLINE | ID: mdl-36970549

ABSTRACT

Pathogenic germline variants in the PIGT gene are associated with the "multiple congenital anomalies-hypotonia-seizures syndrome 3" (MCAHS3) phenotype. So far, fifty patients have been reported, most of whom suffer from intractable epilepsy. Recently, a comprehensive analysis of a cohort of 26 patients with PIGT variants has broadened the phenotypical spectrum and indicated that both p.Asn527Ser and p.Val528Met are associated with a milder epilepsy phenotype and less severe outcomes. Since all reported patients are of Caucasian/Polish origin and most harbor the same variant (p.Val528Met), the ability to draw definitive conclusions regarding the genotype-phenotype correlation remains limited. We report a new case with a homozygous variant p.Arg507Trp in the PIGT gene, detected on clinical exome sequencing. The North African patient in question displays a predominantly neurological phenotype with global developmental delay, hypotonia, brain abnormalities, and well-controlled epileptic seizures. Homozygous and heterozygous variants in codon 507 have been reported to cause PIGT deficiency without biochemical confirmation. In this study, FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the p.Arg507Trp variant leads to mildly reduced activity. Our result confirm the pathogenicity of this variant and strengthen recently reported evidence on the genotype-phenotype correlation of the PIGT variant.

2.
Biosci Rep ; 42(7)2022 07 29.
Article in English | MEDLINE | ID: mdl-35695679

ABSTRACT

The coronary artery disease (CAD) is a chronic inflammatory disease involving genetic as well as environmental factors. Recent evidence suggests that the oral microbiome has a significant role in triggering atherosclerosis. The present study assessed the oral microbiome composition variation between coronary patients and healthy subjects in order to identify a potential pathogenic signature associated with CAD. We performed metagenomic profiling of salivary microbiomes by 16S ribosomal RNA (rRNA) next-generation sequencing. Oral microbiota profiling was performed for 30 individuals including 20 patients with CAD and ten healthy individuals without carotid plaques or previous stroke or myocardial infarction. We found that oral microbial communities in patients and healthy controls are represented by similar global core oral microbiome. The predominant taxa belonged to Firmicutes (genus Streptococcus, Veillonella, Granulicatella, Selenomonas), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Rothia), Bacteroidetes (genus Prevotella, Porphyromonas), and Fusobacteria (genus Fusobacterium, Leptotrichia). More than 60% relative abundance of each sample for both CAD patients and controls is represented by three major genera including Streptococcus (24.97 and 26.33%), Veillonella (21.43 and 19.91%), and Neisseria (14.23 and 15.33%). Using penalized regression analysis, the bacterial genus Eikenella was involved as the major discriminant genus for both status and Syntax score of CAD. We also reported a significant negative correlation between Syntax score and Eikenella abundance in coronary patients' group (Spearman rho = -0.68, P=0.00094). In conclusion, the abundance of Eikenella in oral coronary patient samples compared with controls could be a prominent pathological indicator for the development of CAD.


Subject(s)
Coronary Artery Disease , Microbiota , Bacteria/genetics , Coronary Artery Disease/genetics , Humans , Metagenome , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Streptococcus , Tunisia/epidemiology
3.
Mol Genet Genomic Med ; 10(2): e1868, 2022 02.
Article in English | MEDLINE | ID: mdl-34997822

ABSTRACT

BACKGROUND: In the Tunisian population, the molecular analysis of hearing impairment remains based on conventional approaches, which makes the task laborious and enormously expensive. Exploration of the etiology of Hearing Impairment and the early diagnosis of causal mutations by next-generation sequencing help significantly alleviate social and economic problems. METHODS: We elaborated a custom SureSelectQXT panel for next-generation sequencing of the coding sequences of 42 genes involved in isolated hearing impairment or along with defects of the retina, the thyroid, and the kidneys. RESULTS: We report eight pathogenic variants, four of which are novel in patients with isolated hearing impairment, hearing impairment, and renal tubular acidosis, Usher syndrome and Pendred syndrome. Functional studies using molecular modeling showed the severe impact of the novel missense mutations on the concerned proteins. Basically, we identified mutations in nuclear as well as mitochondrial genes in a Tunisian family with isolated hearing impairment, which explains definitely the phenotype detected since 2006. CONCLUSION: Our results expanded the mutation spectrum and genotype-phenotype correlation of isolated and syndromic hearing loss and also emphasized the importance of combining both targeted next-generation sequencing and detailed clinical evaluation to elaborate a more accurate diagnosis for hearing impairment and related phenotypes especially in North African populations.


Subject(s)
Thyroid Gland , Usher Syndromes , High-Throughput Nucleotide Sequencing/methods , Humans , Kidney , Mutation , Retina , Usher Syndromes/diagnosis , Usher Syndromes/genetics
4.
J Biomol Struct Dyn ; 40(21): 10940-10951, 2022.
Article in English | MEDLINE | ID: mdl-34423747

ABSTRACT

Hereditary hearing impairment (HI) is a common disease with the highest incidence among sensory defects. Several genes have been identified to affect stereocilia structure causing HI, including the unconventional myosin3A. Interestingly, we noticed that variants in MYO3A gene have been previously found to cause variable HI onset and severity. Using clinical exome sequencing, we identified a novel pathogenic variant p.(Lys50Arg) in the MYO3A kinase domain (MYO3A-KD). Previous in vitro studies supported its damaging effect as a 'kinase-dead' mutant. We further analyzed this variation through molecular dynamics which predicts that changes in flexibility of MYO3A structure would influence the protein-ATP binding properties. This Lys50Arg mutation segregated with congenital profound non-syndromic HI. To better investigate this variability, we collected previously identified MYO3A-KDs variants, p.(Tyr129Cys), p.(His142Gln) and p.(Pro189Thr), and built both wild type and mutant 3 D MYO3A-KD models to assess their impact on the protein structure and function. Our results suggest that KD mutations could either cause a congenital profound form of HI, when particularly affecting the kinase activity and preventing the auto-phosphorylation of the motor, or a late onset and progressive form, when partially or completely inactivating the MYO3A protein. In conclusion, we report a novel pathogenic variant affecting the ATP-binding site within the MYO3A-KD causing congenital profound HI. Through computational approaches we provide a deeper understanding on the correlation between the effects of MYO3A-KD mutations and the variable hearing phenotypes. To the best of our knowledge this is the first study to correlate mutations' genotypes with the variable phenotypes of DFNB30.Communicated by Ramaswamy H. Sarma.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Myosin Type III , Humans , Hearing Loss, Sensorineural/genetics , Hearing Loss/genetics , Hearing Loss/metabolism , Mutation , Adenosine Triphosphate , Myosin Heavy Chains/genetics , Myosin Type III/genetics
5.
Eur J Med Genet ; 64(12): 104373, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34737153

ABSTRACT

Intellectual disability (ID) often co-occurs with other neurologic phenotypes making molecular diagnosis more challenging particularly in consanguineous populations with the co-segregation of more than one ID-related gene in some cases. In this study, we investigated the phenotype of three patients from a large Tunisian family with significant ID phenotypic variability and microcephaly and performed a clinical exome sequencing in two cases. We identified, within the first branch, a homozygous variant in the TRAPPC9 gene (p.Arg472Ter) in two cases presenting severe ID, absent speech, congenital/secondary microcephaly in addition to autistic features, supporting the implication of TRAPPC9 in the "secondary" autism spectrum disorders and congenital microcephaly. In the second branch, we identified a homozygous variant (p.Lys189ArgfsTer15) in the CDK5RAP2 gene associated with an heterozygous TRAPPC9 variant (p.Arg472Ter) in one case harbouring primary hereditary microcephaly (MCPH) associated with an inter-hypothalamic adhesion, mixed hearing loss, selective thinning in the retinal nerve fiber layer and parafoveal ganglion cell complex, and short stature. Our findings expand the spectrum of the recently reported neurosensorial abnormalities and revealed the variable phenotype expressivity of CDK5RAP2 defect. Our study highlights the complexity of the genetic background of microcephaly/ID and the efficiency of the exome sequencing to provide an accurate diagnosis and to improve the management and follow-up of such patients.


Subject(s)
Cell Cycle Proteins/genetics , Intellectual Disability/genetics , Intercellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Child , Consanguinity , Female , Genetic Variation/genetics , Homozygote , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Nervous System Malformations/genetics , Pedigree , Phenotype , Speech Disorders/genetics , Tunisia
6.
Genet Test Mol Biomarkers ; 25(8): 528-539, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34406847

ABSTRACT

Background: Variants in the HARS2 gene have been reported to be associated with nonsyndromic hearing loss (HL) and Perrault syndrome (PS), a rare recessive disorder marked by bilateral sensorineural HL and ovarian dysgenesis. Given the low number of pathogenic variants described in the HARS2 gene, no genotype/phenotype correlations have been established between variants in this gene and the clinical data. Materials and Methods: Whole blood was collected from four members of a Lebanese family with PS. An affected woman was evaluated for HL by clinical examination and audiological tests. Primary ovarian failure was analyzed according to age of primary or secondary amenorrhea, follicle stimulating hormone levels, and pelvic ultrasound. The existence of neurological symptoms and other associated conditions was checked. To identify the causative variant, we used a custom HaloPlexHS panel for next-generation sequencing of the coding sequences of six genes implicated in this syndrome. Results: We identified a novel homozygous HARS2 missense variant (c.260G>A; p.Arg87His), which is only the second homozygous variant in the HARS2 gene identified to date worldwide. This variant is predicted to be deleterious by multiple in silico analysis tools, moreover the Arg87 amino acid nearly is invariant among eight species. Based on molecular modeling analysis, this variation is predicted to disturb the proper folding of HARS2, which may reduce its aminoacylation efficiency. Clinical data are compared with the other cases recorded in the literature to help gain further knowledge with regard to the phenotype. Conclusion: Our results provide strong evidence corroborating the etiological association of this mutation with the HARS2-PS phenotype. HARS2 variants need to be searched for in patients with early-onset bilateral sensorineural HL and ovarian dysfunction in women so as to guarantee accurate endocrinological surveillance and management to minimize secondary complications.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Gonadal Dysgenesis, 46,XX/genetics , Hearing Loss, Sensorineural/genetics , Adult , Amino Acyl-tRNA Synthetases/metabolism , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Gonadal Dysgenesis, 46,XX/metabolism , Gonadal Dysgenesis, 46,XX/pathology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Male , Middle Aged , Mutation , Mutation, Missense , Pedigree , Phenotype
7.
J Adv Res ; 31: 13-24, 2021 07.
Article in English | MEDLINE | ID: mdl-34194829

ABSTRACT

Introduction: Hearing impairment (HI) is characterized by complex genetic heterogeneity. The evolution of next generation sequencing, including targeted enrichment panels, has revolutionized HI diagnosis. Objectives: In this study, we investigated genetic causes in 22 individuals with non-GJB2 HI. Methods: We customized a HaloplexHS kit to include 30 genes known to be associated with autosomal recessive nonsyndromic HI (ARNSHI) and Usher syndrome in North Africa. Results: In accordance with the ACMG/AMP guidelines, we report 11 pathogenic variants; as follows; five novel variants including three missense (ESRRB-Tyr295Cys, MYO15A-Phe2089Leu and MYO7A-Tyr560Cys) and two nonsense (USH1C-Gln122Ter and CIB2-Arg104Ter) mutations; two previously reported mutations (OTOF-Glu57Ter and PNPT1-Glu475Gly), but first time identified among Tunisian families; and four other identified mutations namely WHRN-Gly808AspfsX11, SLC22A4-Cys113Tyr and two MYO7A compound heterozygous splice site variants that were previously described in Tunisia. Pathogenic variants in WHRN and CIB2 genes, in patients with convincing phenotype ruling out retinitis pigmentosa, provide strong evidence supporting their association with ARNSHI. Moreover, we shed lights on the pathogenic implication of mutations in PNPT1 gene in auditory function providing new evidence for its association with ARNSHI. Lack of segregation of a previously identified causal mutation OTOA-Val603Phe further supports its classification as variant of unknown significance. Our study reports absence of otoacoustic emission in subjects using bilateral hearing aids for several years indicating the importance of screening genetic alteration in OTOF gene for proper management of those patients. Conclusion: In conclusion, our findings do not only expand the spectrum of HI mutations in Tunisian patients, but also improve our knowledge about clinical relevance of HI causing genes and variants.


Subject(s)
Hearing Loss/diagnosis , Hearing Loss/genetics , Adult , Child, Preschool , Deafness/diagnosis , Deafness/genetics , Exoribonucleases , Female , Genetic Heterogeneity , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Membrane Proteins , Mutation , Mutation, Missense , Pedigree , Phenotype , Tunisia , Usher Syndromes/diagnosis , Usher Syndromes/genetics , Young Adult
8.
Am J Med Genet A ; 185(4): 1081-1090, 2021 04.
Article in English | MEDLINE | ID: mdl-33403770

ABSTRACT

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Abnormalities, Multiple/genetics , Cataract/genetics , Congenital Disorders of Glycosylation/genetics , Membrane Proteins/genetics , Muscular Atrophy/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/ultrastructure , Abnormalities, Multiple/pathology , Adolescent , Cataract/complications , Cataract/pathology , Child , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/pathology , Eye/pathology , Facial Recognition , Facies , Female , Humans , Membrane Proteins/ultrastructure , Muscular Atrophy/complications , Muscular Atrophy/pathology , Mutation, Missense/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...