Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 360(3): 476-483, 2017 03.
Article in English | MEDLINE | ID: mdl-28035007

ABSTRACT

Factor XI (FXI) is an integral component of the intrinsic pathway of the coagulation cascade and plays a critical role in thrombus formation. Because its role in the pathogenesis of cerebral microembolic signals (MES) is unclear, this study used a potent and selective small molecule inhibitor of FXIa, compound 1, to assess the effect of FXI blockade in our recently established preclinical model of cerebral MES induced by FeCl3 injury of the carotid artery in male New Zealand White rabbits. Ascending doses of compound 1 were evaluated simultaneously for both carotid arterial thrombosis by a Doppler flowmeter and MES in the middle cerebral artery by a transcranial Doppler. Plasma drug exposure and pharmacodynamic responses to compound 1 treatment were also assessed. The effective dose for 50% inhibition (ED50) of thrombus formation was 0.003 mg/kg/h compound 1, i.v. for the integrated blood flow, 0.004 mg/kg/h for reduction in thrombus weight, and 0.106 mg/kg/h for prevention of MES. The highest dose, 3 mg/kg/h compound 1, achieved complete inhibition in both thrombus formation and MES. In addition, we assessed the potential bleeding liability of compound 1 (5 mg/kg/h, i.v., >1250-fold ED50 levels in arterial thrombosis) in rabbits using a cuticle bleeding model, and observed about 2-fold (not statistically significant) prolongation in bleeding time. Our study demonstrates that compound 1 produced a robust and dose-dependent inhibition of both arterial thrombosis and MES, suggesting that FXIa blockade may represent a novel therapeutic strategy for the reduction in MES in patients at risk for ischemic stroke.


Subject(s)
Anticoagulants/pharmacology , Blood Coagulation/drug effects , Carotid Artery Thrombosis , Factor XIa/antagonists & inhibitors , Intracranial Embolism , Animals , Blood Coagulation/physiology , Carotid Artery Thrombosis/blood , Carotid Artery Thrombosis/complications , Carotid Artery Thrombosis/diagnostic imaging , Carotid Artery Thrombosis/drug therapy , Disease Models, Animal , Drug Design , Injections, Intravenous , Intracranial Embolism/blood , Intracranial Embolism/diagnostic imaging , Intracranial Embolism/etiology , Intracranial Embolism/prevention & control , Male , Rabbits , Ultrasonography, Doppler, Transcranial/methods
2.
J Med Chem ; 59(5): 1818-29, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26871940

ABSTRACT

A potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques. The isolated metabolites recovered from the NMR experiments were then submitted directly to an in vitro FIXa enzymatic assay. The order of the metabolites' binding affinity to the Factor IXa protein from the ALIS assay was completely consistent with the enzymatic assay results. This work showcases an innovative and efficient approach to uncover structure-activity relationships (SARs) and guide drug design via microisolation-structural characterization and ALIS capabilities.


Subject(s)
Automation , Drug Design , Factor IXa/antagonists & inhibitors , Fibrinolytic Agents/pharmacology , Nuclear Magnetic Resonance, Biomolecular , Animals , Dose-Response Relationship, Drug , Factor IXa/metabolism , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Humans , Ligands , Molecular Structure , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(22): 5437-43, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26318999

ABSTRACT

Using structure based drug design, a novel class of potent coagulation factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds were evaluated in rat IV/PO pharmacokinetic (PK) studies and demonstrated desirable oral PK profiles. Finally, the pharmacodynamics (PD) of this class of molecules were evaluated in thrombin generation assay (TGA) in Corn Trypsin Inhibitor (CTI) citrated human plasma and demonstrated characteristics of a FIXa inhibitor.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Factor IXa/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Heterocyclic Compounds, 3-Ring/chemical synthesis , Humans , Molecular Structure , Rats
4.
Bioorg Med Chem Lett ; 25(11): 2321-5, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25937013

ABSTRACT

Two high-throughput screening hits were investigated for SAR against human factor IXa. Both hits feature a benzamide linked to a [6-5]-heteroaryl via an alkyl amine. In the case where this system is a benzimidazolyl-ethyl amine the binding potency for the hit was improved >500-fold, from 9 µM to 0.016 µM. For the other hit, which contains a tetrahydropyrido-indazole amine, potency was improved 20-fold, from 2 µM to 0.09 µM. X-ray crystal structures were obtained for an example of each class which improved understanding of the binding, and will enable further drug discovery efforts.


Subject(s)
Anticoagulants/chemistry , Anticoagulants/pharmacology , Factor IXa/antagonists & inhibitors , Binding Sites , Drug Discovery , Humans , Models, Molecular , Molecular Structure , Protein Conformation
5.
ACS Med Chem Lett ; 6(5): 553-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005532

ABSTRACT

Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

6.
Bioorg Med Chem Lett ; 25(21): 4945-4949, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25978966

ABSTRACT

Using structure based drug design (SBDD), a novel class of potent coagulation Factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds demonstrated oral bioavailability in rat IV/PO pharmacokinetic (PK) studies. Finally, the pharmacodynamics (PD) of this class of molecules was evaluated in Thrombin Generation Assay (TGA) in Corn Trypsin Inhibitor (CTI) citrated human plasma and demonstrated characteristics of a FIXa inhibitor.


Subject(s)
Amines/pharmacology , Enzyme Inhibitors/pharmacology , Factor IXa/antagonists & inhibitors , Administration, Oral , Amines/chemical synthesis , Amines/chemistry , Animals , Biological Availability , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Factor IXa/metabolism , Humans , Models, Molecular , Molecular Structure , Rats , Structure-Activity Relationship
7.
Proc Natl Acad Sci U S A ; 108(13): 5378-83, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21389266

ABSTRACT

Platensimycin (PTM) is a recently discovered broad-spectrum antibiotic produced by Streptomyces platensis. It acts by selectively inhibiting the elongation-condensing enzyme FabF of the fatty acid biosynthesis pathway in bacteria. We report here that PTM is also a potent and highly selective inhibitor of mammalian fatty acid synthase. In contrast to two agents, C75 and cerulenin, that are widely used as inhibitors of mammalian fatty acid synthase, platensimycin specifically inhibits fatty acid synthesis but not sterol synthesis in rat primary hepatocytes. PTM preferentially concentrates in liver when administered orally to mice and potently inhibits hepatic de novo lipogenesis, reduces fatty acid oxidation, and increases glucose oxidation. Chronic administration of platensimycin led to a net reduction in liver triglyceride levels and improved insulin sensitivity in db/+ mice fed a high-fructose diet. PTM also reduced ambient glucose levels in db/db mice. These results provide pharmacological proof of concept of inhibiting fatty acid synthase for the treatment of diabetes and related metabolic disorders in animal models.


Subject(s)
Adamantane/therapeutic use , Aminobenzoates/therapeutic use , Anilides/therapeutic use , Diabetes Mellitus/drug therapy , Fatty Acid Synthases/antagonists & inhibitors , Fatty Liver/drug therapy , Hypoglycemic Agents/therapeutic use , Animals , Anti-Infective Agents/therapeutic use , Disease Models, Animal , Fatty Acids/biosynthesis , Glucose/metabolism , Humans , Liver/metabolism , Mice , Mice, Mutant Strains , Oxidation-Reduction , Sterols/biosynthesis
8.
Bioorg Med Chem Lett ; 20(20): 6088-92, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20832306
9.
Eur J Pharmacol ; 616(1-3): 346-52, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19577557

ABSTRACT

Plasma cell membrane glycoprotein-1, or ectonucleotide pyrophosphatase/phosphodieterase (PC-1/ENPP1) has been shown to inhibit insulin signaling in cultured cells in vitro and in transgenic mice in vivo when overexpressed. Furthermore, both genetic polymorphism and increased expression of PC-1 have been reported to be associated with type 2 diabetes in humans. Thus it was proposed that PC-1 inhibition represents a potential strategy for the treatment of type 2 diabetes. However, it has not been proven that suppression of PC-1 expression or inhibition of its function will actually improve insulin sensitivity. We show in the current study that transient overexpression of PC-1 inhibits insulin-stimulated insulin receptor tyrosine phosphorylation in HEK293 cells, while knockdown of PC-1 with siRNA significantly increases insulin-stimulated Akt phosphorylation in HuH7 human hepatoma cells. Adenoviral vector expressing a short hairpin RNA against mouse PC-1 (PC-1shRNA) was utilized to efficiently knockdown PC-1 expression in the livers of db/db mice. In comparison with db/db mice treated with a control virus, db/db mice treated with the PC-1shRNA adenovirus had approximately 80% lower hepatic PC-1 mRNA levels, approximately 30% lower ambient fed plasma glucose, approximately 25% lower fasting plasma glucose, and significantly improved oral glucose tolerance. Taken together, these results demonstrate that suppression of PC-1 expression improves insulin sensitivity in vitro and in an animal model of diabetes, supporting the proposition that PC-1 inhibition is a potential therapeutic approach for the treatment of type 2 diabetes.


Subject(s)
Down-Regulation , Insulin/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Adenoviridae/genetics , Animals , Blood Glucose/metabolism , Cell Line , Fasting , Gene Knockdown Techniques , Hepatocytes/metabolism , Humans , Male , Mice , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Signal Transduction/genetics , Time Factors , Transfection , Tyrosine/metabolism
10.
Eur J Pharmacol ; 606(1-3): 17-24, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19374858

ABSTRACT

Plasma cell membrane glycoprotein-1 or ectonucleotide pyrophosphatase/phosphodiesterase (PC-1/ENPP1) has been shown to inhibit insulin signaling, and its genetic polymorphism or increased expression is associated with type 2 diabetes in humans. Therefore, PC-1 inhibition represents a potential strategy in treating diabetes. Since patients with phosphodiesterase/pyrophosphatase deficient PC-1 manifest abnormal calcification, enhancing insulin signaling by inhibiting PC-1 for the treatment of diabetes will be feasible only if PC-1 phosphodiesterase/pyrophosphatase activity needs not be significantly diminished. However, whether inhibition of insulin receptor signaling by PC-1 is dependent upon its phosphodiesterase/pyrophosphatase activity remains controversial. In this study, the extracellular domain of the human PC-1 in its native form or with a T256A or T256S mutation was overexpressed and purified. Enzymatic assays showed that both mutants have less than 10% of the activity of the wild-type protein. In HEK293 cells stably expressing recombinant insulin receptor or insulin-like growth factor 1 (IGF1) receptor, transient expression of wild-type full length PC-1 (PC-1.FL.WT) but not the T256A or T256S mutants inhibits insulin signaling without affecting IGF1 signaling. Western blot and FACS analysis showed that the wild-type and mutant full length PC-1 proteins are expressed at similar levels in the cells, and were localized to the similar levels on the cell surface. Overexpression of PC-1.FL.WT did not affect insulin receptor mRNA level, total protein and cell surface levels. Together, these results suggest that the inhibition of insulin signaling by PC-1 is somewhat specific and is dependent upon the enzymatic activity of the phosphodiesterase/pyrophosphatase.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Signal Transduction , Cell Line , Gene Expression Regulation, Enzymologic , Humans , Insulin-Like Growth Factor I/metabolism , Mutation , Phosphoric Diester Hydrolases/deficiency , Phosphoric Diester Hydrolases/genetics , Protein Transport , Pyrophosphatases/deficiency , Pyrophosphatases/genetics , Receptor, Insulin/genetics , Transfection
11.
J Clin Invest ; 115(4): 1030-8, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15761499

ABSTRACT

Effective therapies for the treatment of obesity, a key element of metabolic syndrome, are urgently needed but currently lacking. Stearoyl-CoA desaturase-1 (SCD1) is the rate-limiting enzyme catalyzing the conversion of saturated long-chain fatty acids into monounsaturated fatty acids, which are major components of triglycerides. In the current study, we tested the efficacy of pharmacological inhibition of SCD1 in controlling lipogenesis and body weight in mice. SCD1-specific antisense oligonucleotide inhibitors (ASOs) reduced SCD1 expression, reduced fatty acid synthesis and secretion, and increased fatty acid oxidization in primary mouse hepatocytes. Treatment of mice with SCD1 ASOs resulted in prevention of diet-induced obesity with concomitant reductions in SCD1 expression and the ratio of oleate to stearoyl-CoA in tissues and plasma. These changes correlated with reduced body adiposity, hepatomegaly and steatosis, and postprandial plasma insulin and glucose levels. Furthermore, SCD1 ASOs reduced de novo fatty acid synthesis, decreased expression of lipogenic genes, and increased expression of genes promoting energy expenditure in liver and adipose tissues. Thus, SCD1 inhibition represents a new target for the treatment of obesity and related metabolic disorders.


Subject(s)
Obesity/prevention & control , Oligonucleotides, Antisense/metabolism , Stearoyl-CoA Desaturase , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Body Weight , Cells, Cultured , Diet , Fatty Acids/chemistry , Fatty Acids/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Insulin/metabolism , Liver/cytology , Liver/enzymology , Mice , Mice, Inbred Strains , Motor Activity , Obesity/metabolism , Oligonucleotides, Antisense/genetics , Oxidation-Reduction , Oxygen Consumption , Stearoyl-CoA Desaturase/antagonists & inhibitors , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
12.
J Mol Graph Model ; 23(5): 457-64, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15781188

ABSTRACT

Molecular modeling has been used to assist in the development of a novel series of potent glycogen phosphorylase inhibitors based on a phenyl diacid lead, compound 1. In the absence of suitable competitive binding assays, compound 1 was predicted to bind at the AMP allosteric site based on superposition onto known inhibitors which bind at different sites in the enzyme and analyses of the surrounding protein environment associated with these distinct sites. Possible docking modes of compound 1 at the AMP allosteric site were further explored using the crystal structure of rabbit muscle glycogen phosphorylase complexed with a Bayer diacid compound W1807 (PDB entry 3AMV). Compound 1 was predicted to interact with positively charged arginines at the AMP allosteric site in the docking model. Characterization of the binding pocket by a grid-based surface calculation of the docking model revealed a large unfilled hydrophobic region near the central phenyl ring, suggesting that compounds with larger hydrophobic groups in this region would improve binding. A series of naphthyl diacid compounds were designed and synthesized to access this hydrophobic cleft, and showed significantly improved potency.


Subject(s)
Computer-Aided Design , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Adenosine Monophosphate/metabolism , Allosteric Site , Glycogen Phosphorylase/chemistry , Glycogen Phosphorylase/metabolism , Glycogen Phosphorylase, Liver Form/antagonists & inhibitors , Glycogen Phosphorylase, Liver Form/chemistry , Glycogen Phosphorylase, Liver Form/metabolism , Glycogen Phosphorylase, Muscle Form/antagonists & inhibitors , Glycogen Phosphorylase, Muscle Form/chemistry , Glycogen Phosphorylase, Muscle Form/metabolism , Humans , In Vitro Techniques , Lead/chemistry , Lead/pharmacology , Models, Chemical , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics
13.
Bioorg Med Chem Lett ; 13(24): 4385-8, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14643331

ABSTRACT

The preparation of a series of substituted indoles coupled to six- and seven-membered cyclic lactams is described and their role as human glycogen phosphorylase a inhibitors discussed. The SAR of the indole moiety and lactam ring are presented.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Quinolines/chemical synthesis , Quinolines/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Kinetics , Models, Molecular , Molecular Conformation , Quinolines/chemistry , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 13(22): 4125-8, 2003 Nov 17.
Article in English | MEDLINE | ID: mdl-14592521

ABSTRACT

A new class of diacid analogues that binds at the AMP site not only are very potent but have approximately 10-fold selectivity in liver versus muscle glycogen phosphorylase (GP) in the in vitro assay. The synthesis, structure, and in vitro and in vivo biological evaluation of these liver selective glycogen phosphorylase inhibitors are discussed.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Naphthols/chemical synthesis , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites , Glycogen Phosphorylase/chemistry , Kinetics , Liver/enzymology , Mice , Models, Molecular , Molecular Conformation , Naphthols/pharmacology , Protein Conformation , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...