Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 125(8): 1767-82, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22864387

ABSTRACT

This study presents the development of an enhanced map in faba bean. The map contains 258 loci, mostly gene-based markers, organized in 16 linkage groups that expand 1,875 cM, with an average inter-marker distance of 7.26 cM. The combination of EST-derived markers with a number of markers physically located or previously ascribed to chromosomes by trisomic segregation, allowed the allocation of eight linkage groups (229 markers), to specific chromosomes. Moreover, this approach provided anchor points to establish a global homology among the faba bean chromosomes and those of closely-related legumes species. The map was used to identify and validate, for the first time, QTLs controlling five flowering and reproductive traits: days to flowering, flowering length, pod length, number of seeds per pod and number of ovules per pod. Twelve QTLs stable in the 2 years of evaluation were identified in chromosomes II, V and VI. Comparative mapping suggested the conservation of one of the faba bean genomic regions controlling the character days to flowering in other five legume species (Medicago, Lotus, pea, lupine, chickpea). Additional syntenic co-localizations of QTLs controlling pod length and number of seeds per pod between faba bean and Lotus japonicus are likely. The new genetic map opens the way for further translational studies between faba bean and related legume species, and provides an efficient tool for breeding applications such as QTL analysis and marker-assisted selection.


Subject(s)
Fabaceae/genetics , Flowers/genetics , Genomics/methods , Models, Biological , Quantitative Trait Loci/genetics , Vicia faba/growth & development , Vicia faba/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Fabaceae/growth & development , Flowers/physiology , Genes, Plant/genetics , Genetic Linkage , Genetic Markers , Inbreeding , Quantitative Trait, Heritable , Seeds/genetics , Synteny/genetics
2.
Theor Appl Genet ; 112(5): 977-83, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16402186

ABSTRACT

The world's oldest and largest Medicago truncatula collection is housed at the South Australian Research and Development Institute (SARDI). We used six simple sequence repeat (SSR) loci to analyse the genetic diversity and relationships between randomly selected individuals from 192 accessions in the core collection. M. truncatula is composed of three subspecies (ssp.): ssp. truncatula, ssp. longeaculeata, and ssp. tricycla. Analysis at the level of six SSR loci supports the concept of ssp. tricycla, all the samples of which showed unique alleles at two loci. Contingency Chi-squared tests were significant between ssp. tricycla and ssp. truncatula at four loci, suggesting a barrier to gene flow between these subspecies. In accessions defined as ssp. longeaculeata, no unique allelic distribution or diagnostic sizes were observed, suggesting this apparent ssp. is a morphological variant of ssp. truncatula. The data also suggest M. truncatula that exhibits unusually wide genotype dispersal throughout its native Mediterranean region, possibly due to animal and trade-related movements. Our results showed the collection to be highly diverse, exhibiting an average of 25 SSR alleles per locus, with over 90% of individuals showing discrete genotypes. The rich diversity of the SARDI collection provides an invaluable resource for studying natural allelic variation of M. truncatula. To efficiently exploit the variation in the SARDI collection, we have defined a subset of accessions (n = 61) that maximises the diversity.


Subject(s)
Genetic Variation , Genotype , Medicago truncatula/genetics , Microsatellite Repeats , Alleles , Animals , Geography , Medicago truncatula/classification , Mediterranean Sea , Phylogeny , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...