Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
JMIR Med Inform ; 10(11): e37884, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36346661

ABSTRACT

BACKGROUND: Living kidney donation currently constitutes approximately a quarter of all kidney donations. There exist barriers that preclude prospective donors from donating, such as medical ineligibility and costs associated with donation. A better understanding of perceptions of and barriers to living donation could facilitate the development of effective policies, education opportunities, and outreach strategies and may lead to an increased number of living kidney donations. Prior research focused predominantly on perceptions and barriers among a small subset of individuals who had prior exposure to the donation process. The viewpoints of the general public have rarely been represented in prior research. OBJECTIVE: The current study designed a web-scraping method and machine learning algorithms for collecting and classifying comments from a variety of online sources. The resultant data set was made available in the public domain to facilitate further investigation of this topic. METHODS: We collected comments using Python-based web-scraping tools from the New York Times, YouTube, Twitter, and Reddit. We developed a set of guidelines for the creation of training data and manual classification of comments as either related to living organ donation or not. We then classified the remaining comments using deep learning. RESULTS: A total of 203,219 unique comments were collected from the above sources. The deep neural network model had 84% accuracy in testing data. Further validation of predictions found an actual accuracy of 63%. The final database contained 11,027 comments classified as being related to living kidney donation. CONCLUSIONS: The current study lays the groundwork for more comprehensive analyses of perceptions, myths, and feelings about living kidney donation. Web-scraping and machine learning classifiers are effective methods to collect and examine opinions held by the general public on living kidney donation.

2.
Sci Rep ; 12(1): 12259, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851592

ABSTRACT

A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, segmentation, and classification that are integrated sequentially into one framework to assist the radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass classification and diagnosis using a stacked ensemble of residual neural network (ResNet) models (i.e. ResNet50V2, ResNet101V2, and ResNet152V2). The work presents the task of classifying the detected and segmented breast masses into malignant or benign, and diagnosing the Breast Imaging Reporting and Data System (BI-RADS) assessment category with a score from 2 to 6 and the shape as oval, round, lobulated, or irregular. The proposed methodology was evaluated on two publicly available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Comparative experiments were conducted on the individual models and an average ensemble of models with an XGBoost classifier. Qualitative and quantitative results show that the proposed model achieved better performance for (1) Pathology classification with an accuracy of 95.13%, 99.20%, and 95.88%; (2) BI-RADS category classification with an accuracy of 85.38%, 99%, and 96.08% respectively on CBIS-DDSM, INbreast, and the private dataset; and (3) shape classification with 90.02% on the CBIS-DDSM dataset. Our results demonstrate that our proposed integrated framework could benefit from all automated stages to outperform the latest deep learning methodologies.


Subject(s)
Breast Neoplasms , Mammography , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Disease Progression , Early Detection of Cancer , Female , Humans , Mammography/methods , Neural Networks, Computer
3.
Sensors (Basel) ; 22(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35746161

ABSTRACT

One of the prime aims of smart cities has been to optimally manage the available resources and systems that are used in the city. With an increase in urban population that is set to grow even faster in the future, smart city development has been the main goal for governments worldwide. In this regard, while the useage of Artificial Intelligence (AI) techniques covering the areas of Machine and Deep Learning have garnered much attention for Smart Cities, less attention has focused towards the use of combinatorial optimization schemes. To help with this, the current review presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things (IoT). A mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. This review will help researchers by providing them a consolidated starting point for research in the domain of smart city application optimization.


Subject(s)
Internet of Things , Algorithms , Artificial Intelligence , Cities/epidemiology
4.
Comput Methods Programs Biomed ; 221: 106884, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35594582

ABSTRACT

BACKGROUND AND OBJECTIVE: Computer-aided-detection (CAD) systems have been developed to assist radiologists on finding suspicious lesions in mammogram. Deep Learning technology have recently succeeded to increase the chance of recognizing abnormality at an early stage in order to avoid unnecessary biopsies and decrease the mortality rate. In this study, we investigated the effectiveness of an end-to-end fusion model based on You-Only-Look-Once (YOLO) architecture, to simultaneously detect and classify suspicious breast lesions on digital mammograms. Four categories of cases were included: Mass, Calcification, Architectural Distortions, and Normal from a private digital mammographic database including 413 cases. For all cases, Prior mammograms (typically scanned 1 year before) were all reported as Normal, while Current mammograms were diagnosed as cancerous (confirmed by biopsies) or healthy. METHODS: We propose to apply the YOLO-based fusion model to the Current mammograms for breast lesions detection and classification. Then apply the same model retrospectively to synthetic mammograms for an early cancer prediction, where the synthetic mammograms were generated from the Prior mammograms by using the image-to-image translation models, CycleGAN and Pix2Pix. RESULTS: Evaluation results showed that our methodology could significantly detect and classify breast lesions on Current mammograms with a highest rate of 93% ± 0.118 for Mass lesions, 88% ± 0.09 for Calcification lesions, and 95% ± 0.06 for Architectural Distortion lesions. In addition, we reported evaluation results on Prior mammograms with a highest rate of 36% ± 0.01 for Mass lesions, 14% ± 0.01 for Calcification lesions, and 50% ± 0.02 for Architectural Distortion lesions. Normal mammograms were accordingly classified with an accuracy rate of 92% ± 0.09 and 90% ± 0.06 respectively on Current and Prior exams. CONCLUSIONS: Our proposed framework was first developed to help detecting and identifying suspicious breast lesions in X-ray mammograms on their Current screening. The work was also suggested to reduce the temporal changes between pairs of Prior and follow-up screenings for early predicting the location and type of abnormalities in Prior mammogram screening. The paper presented a CAD method to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning and image-to-image translation for a biomedical application.


Subject(s)
Breast Neoplasms , Calcinosis , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Diagnosis, Computer-Assisted , Early Detection of Cancer , Female , Humans , Mammography/methods , Retrospective Studies
5.
Sensors (Basel) ; 22(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35408163

ABSTRACT

Activity and Fall detection have been a topic of keen interest in the field of ambient assisted living system research. Such systems make use of different sensing mechanisms to monitor human motion and aim to ascertain the activity being performed for health monitoring and other purposes. Towards this end, in addition to activity recognition, fall detection is an especially important task as falls can lead to injuries and sometimes even death. This work presents a fall detection and activity recognition system that not only considers various activities of daily living but also considers detection of falls while taking into consideration the direction and severity. Inertial Measurement Unit (accelerometer and gyroscope) data from the SisFall dataset is first windowed into non-overlapping segments of duration 3 s. After suitable data augmentation, it is then passed on to a Convolutional Neural Network (CNN) for feature extraction with an eXtreme Gradient Boosting (XGB) last stage for classification into the various output classes. The experiments show that the gradient boosted CNN performs better than other comparable techniques, achieving an unweighted average recall of 88%.


Subject(s)
Activities of Daily Living , Ambient Intelligence , Humans , Motion , Neural Networks, Computer
6.
NPJ Breast Cancer ; 7(1): 151, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34857755

ABSTRACT

Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of deep learning and its application to medical imaging challenges, UNet and its variations is one of the state-of-the-art models for medical image segmentation that showed promising performance on mammography. In this paper, we propose an architecture, called Connected-UNets, which connects two UNets using additional modified skip connections. We integrate Atrous Spatial Pyramid Pooling (ASPP) in the two standard UNets to emphasize the contextual information within the encoder-decoder network architecture. We also apply the proposed architecture on the Attention UNet (AUNet) and the Residual UNet (ResUNet). We evaluated the proposed architectures on two publically available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Experiments were also conducted using additional synthetic data using the cycle-consistent Generative Adversarial Network (CycleGAN) model between two unpaired datasets to augment and enhance the images. Qualitative and quantitative results show that the proposed architecture can achieve better automatic mass segmentation with a high Dice score of 89.52%, 95.28%, and 95.88% and Intersection over Union (IoU) score of 80.02%, 91.03%, and 92.27%, respectively, on CBIS-DDSM, INbreast, and the private dataset.

7.
Sensors (Basel) ; 21(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640974

ABSTRACT

Human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users' movement and are also relatively simple to implement compared to other approaches. In this paper, we present a hierarchical classification framework based on wavelets and adaptive pooling for activity recognition and fall detection predicting fall direction and severity. To accomplish this, windowed segments were extracted from each recording of inertial measurements from the SisFall dataset. A combination of wavelet based feature extraction and adaptive pooling was used before a classification framework was applied to determine the output class. Furthermore, tests were performed to determine the best observation window size and the sensor modality to use. Based on the experiments the best window size was found to be 3 s and the best sensor modality was found to be a combination of accelerometer and gyroscope measurements. These were used to perform activity recognition and fall detection with a resulting weighted F1 score of 94.67%. This framework is novel in terms of the approach to the human activity recognition and fall detection problem as it provides a scheme that is computationally less intensive while providing promising results and therefore can contribute to edge deployment of such systems.


Subject(s)
Accidental Falls , Movement , Humans
9.
Sci Rep ; 11(1): 4597, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633213

ABSTRACT

This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT images. 27 VOCs in exhaled breath were captured by a micro-reactor approach and quantied using mass spectrometry. CT and breath markers were input into a deep-learning autoencoder classifier with a leave-one-subject-out cross validation for nodule classification. To mitigate the limitation of a small sample size and validate the methodology for individual markers, retrospective CT scans from 467 patients with 727 pulmonary nodules, and breath samples from 504 patients were analyzed. The CAD system achieved 97.8% accuracy, 97.3% sensitivity, 100% specificity, and 99.1% area under curve in classifying pulmonary nodules.


Subject(s)
Lung Neoplasms/diagnosis , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Breath Tests/methods , Diagnosis, Computer-Assisted , Early Detection of Cancer/methods , Female , Humans , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed , Volatile Organic Compounds/analysis
10.
Sensors (Basel) ; 21(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578714

ABSTRACT

The advancements in neural networks and the on-demand need for accurate and near real-time Speech Emotion Recognition (SER) in human-computer interactions make it mandatory to compare available methods and databases in SER to achieve feasible solutions and a firmer understanding of this open-ended problem. The current study reviews deep learning approaches for SER with available datasets, followed by conventional machine learning techniques for speech emotion recognition. Ultimately, we present a multi-aspect comparison between practical neural network approaches in speech emotion recognition. The goal of this study is to provide a survey of the field of discrete speech emotion recognition.

11.
Med Phys ; 48(4): 1584-1595, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33450073

ABSTRACT

PURPOSE: Accurate segmentation of retinal layers of the eye in 3D Optical Coherence Tomography (OCT) data provides relevant information for clinical diagnosis. This manuscript describes a 3D segmentation approach that uses an adaptive patient-specific retinal atlas, as well as an appearance model for 3D OCT data. METHODS: To reconstruct the atlas of 3D retinal scan, the central area of the macula (macula mid-area) where the fovea could be clearly identified, was segmented initially. Markov Gibbs Random Field (MGRF) including intensity, spatial information, and shape of 12 retinal layers were used to segment the selected area of retinal fovea. A set of coregistered OCT scans that were gathered from 200 different individuals were used to build a 2D shape prior. This shape prior was adapted subsequently to the first order appearance and second order spatial interaction MGRF model. After segmenting the center of the macula "foveal area", the labels and appearances of the layers that were segmented were utilized to segment the adjacent slices. The final step was repeated recursively until a 3D OCT scan of the patient was segmented. RESULTS: This approach was tested in 50 patients with normal and with ocular pathological conditions. The segmentation was compared to a manually segmented ground truth. The results were verified by clinical retinal experts. Dice Similarity Coefficient (DSC), 95% bidirectional modified Hausdorff Distance (HD), Unsigned Mean Surface Position Error (MSPE), and Average Volume Difference (AVD) metrics were used to quantify the performance of the proposed approach. The proposed approach was proved to be more accurate than the current state-of-the-art 3D OCT approaches. CONCLUSIONS: The proposed approach has the advantage of segmenting all the 12 retinal layers rapidly and more accurately than current state-of-the-art 3D OCT approaches.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Retina/diagnostic imaging
12.
Med Image Anal ; 68: 101899, 2021 02.
Article in English | MEDLINE | ID: mdl-33260109

ABSTRACT

Altered functional connectivity patterns play an important role in explaining autism spectrum disorder related impairments. In order to examine such connectivity, resting state functional MRI is the most commonly used technique. To date, the majority of works in this area examine a whole time series of brain activation as a discrete stationary process. This study proposes a more detailed analysis of how functional connectivity fluctuates over time and how it is used to quantify instances demonstrating overconnectivity or underconnectivity. Non-parametric surrogates test identifies the areas where underconnectivity or overconnectivity correlate with the Autism Diagnosis Observation Schedule. In addition, this study shows how the areas identified affect the subjects behaviors. Our ultimate goal is a personalized autism diagnosis and treatment CAD system, where each subject impairments are distinctly mapped so they can be addressed with targeted treatments.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnostic imaging , Autistic Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
13.
Inf Process Manag ; 57(6): 102340, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32836694

ABSTRACT

Real-time processing and learning of conflicting data, especially messages coming from different ideas, locations, and time, in a dynamic environment such as Twitter is a challenging task that recently gained lots of attention. This paper introduces a framework for managing, processing, analyzing, detecting, and tracking topics in streaming data. We propose a model selector procedure with a hybrid indicator to tackle the challenge of online topic detection. In this framework, we built an automatic data processing pipeline with two levels of cleaning. Regular and deep cleaning are applied using multiple sources of meta knowledge to enhance data quality. Deep learning and transfer learning techniques are used to classify health-related tweets, with high accuracy and improved F1-Score. In this system, we used visualization to have a better understanding of trending topics. To demonstrate the validity of this framework, we implemented and applied it to health-related twitter data from users originating in the USA over nine months. The results of this implementation show that this framework was able to detect and track the topics at a level comparable to manual annotation. To better explain the emerging and changing topics in various locations over time the result is graphically displayed on top of the United States map.

14.
Sensors (Basel) ; 20(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455753

ABSTRACT

Pressure injuries represent a major concern in many nations. These wounds result from prolonged pressure on the skin, which mainly occur among elderly and disabled patients. If retrieving quantitative information using invasive methods is the most used method, it causes significant pain and discomfort to the patients and may also increase the risk of infections. Hence, developing non-intrusive methods for the assessment of pressure injuries would represent a highly useful tool for caregivers and a relief for patients. Traditional methods rely on findings retrieved solely from 2D images. Thus, bypassing the 3D information deriving from the deep and irregular shape of this type of wounds leads to biased measurements. In this paper, we propose an end-to-end system which uses a single 2D image and a 3D mesh of the pressure injury, acquired using the Structure Sensor, and outputs all the necessary findings such as: external segmentation of the wound as well as its real-world measurements (depth, area, volume, major axis and minor axis). More specifically, a first block composed of a Mask RCNN model uses the 2D image to output the segmentation of the external boundaries of the wound. Then, a second block matches the 2D and 3D views to segment the wound in the 3D mesh using the segmentation output and generates the aforementioned real-world measurements. Experimental results showed that the proposed framework can not only output refined segmentation with 87% precision, but also retrieves reliable measurements, which can be used for medical assessment and healing evaluation of pressure injuries.


Subject(s)
Deep Learning , Pressure Ulcer , Humans , Pressure Ulcer/diagnostic imaging
15.
Med Phys ; 47(6): 2427-2440, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32130734

ABSTRACT

PURPOSE: Early assessment of renal allograft function post-transplantation is crucial to minimize and control allograft rejection. Biopsy - the gold standard - is used only as a last resort due to its invasiveness, high cost, adverse events (e.g., bleeding, infection, etc.), and the time for reporting. To overcome these limitations, a renal computer-assisted diagnostic (Renal-CAD) system was developed to assess kidney transplant function. METHODS: The developed Renal-CAD system integrates data collected from two image-based sources and two clinical-based sources to assess renal transplant function. The imaging sources were the apparent diffusion coefficients (ADCs) extracted from 47 diffusion-weighted magnetic resonance imaging (DW-MRI) scans at 11 different b-values (b0, b50, b100, ..., b1000 s/mm 2 ), and the transverse relaxation rate (R2*) extracted from 30 blood oxygen level-dependent MRI (BOLD-MRI) scans at 5 different echo times (TEs = 2, 7, 12, 17, and 22 ms). Serum creatinine (SCr) and creatinine clearance (CrCl) were the clinical sources for kidney function evaluation. The Renal-CAD system initially performed kidney segmentation using the level-set method, followed by estimation of the ADCs from DW-MRIs and the R2* from BOLD-MRIs. ADCs and R2* estimates from 30 subjects that have both types of scans were integrated with their associated SCr and CrCl. The integrated biomarkers were then used as our discriminatory features to train and test a deep learning-based classifier, namely stacked autoencoders (SAEs) to differentiate non-rejection (NR) from acute rejection (AR) renal transplants. RESULTS: Using a leave-one-subject-out cross-validation approach along with SAEs, the Renal-CAD system demonstrated 93.3% accuracy, 90.0% sensitivity, and 95.0% specificity in differentiating AR from NR. Robustness of the Renal-CAD system was also confirmed by the area under the curve value of 0.92. Using a stratified tenfold cross-validation approach, the Renal-CAD system demonstrated its reproducibility and robustness by a diagnostic accuracy of 86.7%, sensitivity of 80.0%, specificity of 90.0%, and AUC of 0.88. CONCLUSION: The obtained results demonstrate the feasibility and efficacy of accurate, noninvasive identification of AR at an early stage using the Renal-CAD system.


Subject(s)
Kidney Transplantation , Allografts , Computers , Diffusion Magnetic Resonance Imaging , Kidney/diagnostic imaging , Reproducibility of Results
16.
Artif Intell Med ; 102: 101742, 2020 01.
Article in English | MEDLINE | ID: mdl-31980110

ABSTRACT

Pressure injuries represent a tremendous healthcare challenge in many nations. Elderly and disabled people are the most affected by this fast growing disease. Hence, an accurate diagnosis of pressure injuries is paramount for efficient treatment. The characteristics of these wounds are crucial indicators for the progress of the healing. While invasive methods to retrieve information are not only painful to the patients but may also increase the risk of infections, non-invasive techniques by means of imaging systems provide a better monitoring of the wound healing processes without causing any harm to the patients. These systems should include an accurate segmentation of the wound, the classification of its tissue types, the metrics including the diameter, area and volume, as well as the healing evaluation. Therefore, the aim of this survey is to provide the reader with an overview of imaging techniques for the analysis and monitoring of pressure injuries as an aid to their diagnosis, and proof of the efficiency of Deep Learning to overcome this problem and even outperform the previous methods. In this paper, 114 out of 199 papers retrieved from 8 databases have been analyzed, including also contributions on chronic wounds and skin lesions.


Subject(s)
Image Processing, Computer-Assisted/methods , Machine Learning , Wounds and Injuries/diagnostic imaging , Aged , Aged, 80 and over , Algorithms , Humans , Image Processing, Computer-Assisted/trends , Middle Aged , Pressure Ulcer/diagnostic imaging
17.
Sci Rep ; 9(1): 11105, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366941

ABSTRACT

Hypertension is a leading mortality cause of 410,000 patients in USA. Cerebrovascular structural changes that occur as a result of chronically elevated cerebral perfusion pressure are hypothesized to precede the onset of systemic hypertension. A novel framework is presented in this manuscript to detect and quantify cerebrovascular changes (i.e. blood vessel diameters and tortuosity changes) using magnetic resonance angiography (MRA) data. The proposed framework consists of: 1) A novel adaptive segmentation algorithm to delineate large as well as small blood vessels locally using 3-D spatial information and appearance features of the cerebrovascular system; 2) Estimating the cumulative distribution function (CDF) of the 3-D distance map of the cerebrovascular system to quantify alterations in cerebral blood vessels' diameters; 3) Calculation of mean and Gaussian curvatures to quantify cerebrovascular tortuosity; and 4) Statistical and correlation analyses to identify the relationship between mean arterial pressure (MAP) and cerebral blood vessels' diameters and tortuosity alterations. The proposed framework was validated using MAP and MRA data collected from 15 patients over a 700-days period. The novel adaptive segmentation algorithm recorded a 92.23% Dice similarity coefficient (DSC), a 94.82% sensitivity, a 99.00% specificity, and a 10.00% absolute vessels volume difference (AVVD) in delineating cerebral blood vessels from surrounding tissues compared to the ground truth. Experiments demonstrated that MAP is inversely related to cerebral blood vessel diameters (p-value < 0.05) globally (over the whole brain) and locally (at circle of Willis and below). A statistically significant direct correlation (p-value < 0.05) was found between MAP and tortuosity (medians of Gaussian and mean curvatures, and average of mean curvature) globally and locally (at circle of Willis and below). Quantification of the cerebrovascular diameter and tortuosity changes may enable clinicians to predict elevated blood pressure before its onset and optimize medical treatment plans of pre-hypertension and hypertension.


Subject(s)
Hypertension/diagnosis , Hypertension/physiopathology , Algorithms , Brain/blood supply , Brain/pathology , Cerebrovascular Circulation/physiology , Humans , Magnetic Resonance Angiography/methods , Normal Distribution , Perfusion/methods
18.
Front Psychiatry ; 10: 392, 2019.
Article in English | MEDLINE | ID: mdl-31333507

ABSTRACT

Autism spectrum disorder is a neuro-developmental disorder that affects the social abilities of the patients. Yet, the gold standard of autism diagnosis is the autism diagnostic observation schedule (ADOS). In this study, we are implementing a computer-aided diagnosis system that utilizes structural MRI (sMRI) and resting-state functional MRI (fMRI) to demonstrate that both anatomical abnormalities and functional connectivity abnormalities have high prediction ability of autism. The proposed system studies how the anatomical and functional connectivity metrics provide an overall diagnosis of whether the subject is autistic or not and are correlated with ADOS scores. The system provides a personalized report per subject to show what areas are more affected by autism-related impairment. Our system achieved accuracies of 75% when using fMRI data only, 79% when using sMRI data only, and 81% when fusing both together. Such a system achieves an important next step towards delineating the neurocircuits responsible for the autism diagnosis and hence may provide better options for physicians in devising personalized treatment plans.

19.
Sensors (Basel) ; 19(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925832

ABSTRACT

In this paper we analyze an experiment for the use of low-cost gas sensors intended to detect bacteria in wounds using a non-intrusive technique. Seven different genera/species of microbes tend to be present in most wound infections. Detection of these bacteria usually requires sample and laboratory testing which is costly, inconvenient and time-consuming. The validation processes for these sensors with nineteen types of microbes (1 Candida, 2 Enterococcus, 6 Staphylococcus, 1 Aeromonas, 1 Micrococcus, 2 E. coli and 6 Pseudomonas) are presented here, in which four sensors were evaluated: TGS-826 used for ammonia and amines, MQ-3 used for alcohol detection, MQ-135 for CO2 and MQ-138 for acetone detection. Validation was undertaken by studying the behavior of the sensors at different distances and gas concentrations. Preliminary results with liquid cultures of 108 CFU/mL and solid cultures of 108 CFU/cm2 of the 6 Pseudomonas aeruginosa strains revealed that the four gas sensors showed a response at a height of 5 mm. The ammonia detection response of the TGS-826 to Pseudomonas showed the highest responses for the experimental samples over the background signals, with a difference between the values ​​of up to 60 units in the solid samples and the most consistent and constant values. This could suggest that this sensor is a good detector of Pseudomonas aeruginosa, and the recording made of its values ​​could be indicative of the detection of this species. All the species revealed similar CO2 emission and a high response rate with acetone for Micrococcus, Aeromonas and Staphylococcus.


Subject(s)
Gases/analysis , Volatile Organic Compounds/chemistry , Wound Infection/diagnosis , Alcohols/analysis , Ammonia/analysis , Candida/chemistry , Candida/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Humans , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Volatile Organic Compounds/analysis , Wound Infection/microbiology
20.
Technol Cancer Res Treat ; 17: 1533033818798800, 2018 01 01.
Article in English | MEDLINE | ID: mdl-30244648

ABSTRACT

A novel framework for the classification of lung nodules using computed tomography scans is proposed in this article. To get an accurate diagnosis of the detected lung nodules, the proposed framework integrates the following 2 groups of features: (1) appearance features modeled using the higher order Markov Gibbs random field model that has the ability to describe the spatial inhomogeneities inside the lung nodule and (2) geometric features that describe the shape geometry of the lung nodules. The novelty of this article is to accurately model the appearance of the detected lung nodules using a new developed seventh-order Markov Gibbs random field model that has the ability to model the existing spatial inhomogeneities for both small and large detected lung nodules, in addition to the integration with the extracted geometric features. Finally, a deep autoencoder classifier is fed by the above 2 feature groups to distinguish between the malignant and benign nodules. To evaluate the proposed framework, we used the publicly available data from the Lung Image Database Consortium. We used a total of 727 nodules that were collected from 467 patients. The proposed system demonstrates the promise to be a valuable tool for the detection of lung cancer evidenced by achieving a nodule classification accuracy of 91.20%.


Subject(s)
Early Detection of Cancer , Lung Neoplasms/diagnosis , Lung/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Aged , Aged, 80 and over , Algorithms , Databases, Factual , Deep Learning , Diagnosis, Computer-Assisted/methods , Female , Humans , Imaging, Three-Dimensional , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Multiple Pulmonary Nodules/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...