Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501564

ABSTRACT

The main known patterns of thermal and/or catalytic destruction of high-molecular-weight organosilicon compounds are considered from the viewpoint of the prospects for processing their wastes. The advantages of using supercritical fluids in plastic recycling are outlined. They are related to a high diffusion rate, efficient extraction of degradation products, the dependence of solvent properties on pressure and temperature, etc. A promising area for further research is described concerning the application of supercritical fluids for processing the wastes of organosilicon macromolecular compounds.

2.
Polymers (Basel) ; 14(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35215656

ABSTRACT

Recycling of plastic waste, in particular polypropylene, represents one of the most pressing challenges facing humanity. Despite the promise of chemical methods for recycling polypropylene, they usually require a high temperature and are energy-intensive. In this work, we investigated the oxidative thermolysis of polypropylene in aqueous media. This approach rendered it possible to carry out the decomposition of the polymer at a comparatively low temperature (150 °C). It was shown that among the tested, the most promising aqueous medium for the decomposition of polypropylene is water saturated with gaseous oxygen at an elevated pressure (14 bar) and at a temperature of 150 °C. In such an environment, polypropylene was converted mostly to acetic acid (up to 1.3 g/g acetic acid to starting polypropylene mass ratio). Moreover, methanol, formic acid, and propionic acid were also detected as the products. Finally, the applicability of the proposed recycling method to real polypropylene waste was shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...