Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 314: 120952, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37173054

ABSTRACT

The polysaccharide in solution at critical concentration, Cc (g/L), is assimilated to a nano hydrogel (nHG) made of a single polysaccharide chain. Taking as reference the characteristic temperature of 20 ± 2 °C at which kappa-carrageenan (κ-Car) nHG swelling is greater with a Cc = 0.55 ± 0.05 g/L, the temperature of the minimum deswelling in the presence of KCl was found at 30 ± 2 °C for 5 mM with a Cc = 1.15 ± 0.05 g/L but not measurable above 100 °C for 10 mM of which Cc = 1.3 ± 0.05 g/L. Lowering the temperature to 5 °C, contraction of the nHG and further coil-helix transition with self-assembly increases the sample's viscosity, which steadily evolves with time in a logarithmic scale. Accordingly, the relative increment of the viscosity per unit of concentration, Rv (L/g), should increase in agreement with increasing polysaccharide concentration. But the Rv decreases for κ-Car samples above 3.5 ± 0.5 g/L in the presence of 10 mM KCl under steady shear 15 s-1. This reflects a decrease of κ-Car helicity degree knowing that the polysaccharide is rather hydrophilic when its helicity degree is the lowest.

2.
Carbohydr Polym ; 299: 120166, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876782

ABSTRACT

The salt sensitivity and selectivity feature of α-carrageenan (α-Car) were investigated and compared with κ-carrageenan (κ-Car) and iota-carrageenan (ι-Car). These carrageenans are identified by one sulfate group on the 3,6-anhydro-D-galactose (DA) for α-Car, D-galactose (G) for κ-Car and on both carrabiose moieties (G and DA) for ι-Car. The viscosity and temperature, where order-disorder transition have been observed, were greater in presence of CaCl2 for α-Car and ι-Car compared with KCl and NaCl. Conversely, the reactivity of κ-Car systems were greater in presence of KCl than CaCl2. Unlike κ-Car systems, the gelation of α-Car in presence of KCl was observed without syneresis. Thus, the position of sulfate group on the carrabiose determines the importance of counterion valency too. The α-Car could be a good alternative to κ-Car to reduce the syneresis effects.

3.
Food Sci Nutr ; 10(11): 3955-3968, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36348799

ABSTRACT

The functional properties of food gums are remarkably affected by the quality of solvent/cosolutes and temperature in a food system. In this work, for the first time, the chemical characterizations and dilute solution properties of Lepidium perfoliatum seed gum (LPSG), as an emerging carbohydrate polymer, were investigated. It was found that xylose (14.27%), galacturonic acid (10.70%), arabinose (9.07%) and galactose (8.80%) were the main monosaccharaide components in the LPSG samples. The uronic acid content of LPSG samples was obtained to be 14.83%. The average molecular weight and polydispersity index of LPSG were to be 2.34 × 105 g/mol and 3.3, respectively. As the temperature was increased and the pH was decreased and the concentration of cosolutes (Na+, Ca2+, sucrose and lactose) presented in the LPSG solutions was enhanced, the intrinsic viscosity [η] and coil dimension (R coil , V coil , υ s ) of LPSG molecular chains decreased. Activation energy and chain flexibility of LPSG were estimated to be 0.46 × 107 J/kg.mol and 553.08 K, respectively. The relative stiffness parameter (B) of LPSG in the presence of Ca2+ (0.079) was more than that of Na+ (0.032). Incorporation of LPSG into deionized water (0.2%, w/v) diminished the surface activity from 76.75 mN/m to 75.70 mN/m. Zeta potential (ζ) values (-46.85 mV--19.63 mV) demonstrated that dilute solutions of LPSG had strong anionic nature in the pH range of 3-11. The molecular conformation of LPSG was random coil in all the selected solution conditions. It can be concluded that temperature and presence of cosolutes can significantly influence on the LPSG properties in the dilute systems.

4.
Int J Biol Macromol ; 223(Pt A): 1138-1144, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36395929

ABSTRACT

The viscosity of carrageenan solutions in the coil state was greater for α-carrageenan (α-Car) compared with that for κ-carrageenan (κ-Car); thus, the impact of one sulfate group on 3,6-anhydro-D-galactose was compared with the impact of one sulfate group on D-galactose units of the carrabiose residues. The thermal expansion coefficient of the solutions, B2 × Tc, characterizes the way the viscosity decreases because of extension of the physical bonds of the systems to their rupture point (Tc) under increasing temperature. The Tc and B2 × Tc of water were equal to (100 ± 5) °C and (1.57 ± 0.05) × 10-2/°C, respectively. The Tc of the α-Car and κ-Car systems increased after the addition of CaCl2 and KCl, respectively, and with increasing polysaccharide concentration. However, the B2 × Tc of the α-Car and κ-Car systems were rather sensitive to CaCl2 and KCl, respectively. In the overall solutions examined, the expansion of α-Car systems was found to be between 1.5 × 10-2/°C and 1.61 × 10-2/°C, greater than the expansion of κ-Car systems, which was between 1.5 × 10-2/°C and 1.2 × 10-2/°C. Thus, α-Car is a good alternative to κ-Car for reducing syneresis phenomena, and its sensitivity as ι-Car to divalent cations would be due to the anhydro cycle.


Subject(s)
Galactose , Sulfates , Carrageenan/chemistry , Rheology , Polysaccharides/chemistry
5.
Carbohydr Polym ; 267: 118191, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119159

ABSTRACT

Polysaccharide ubiquity is trimmed for applications of low syneresis impact. This syneresis may be crucial for specific applications that are very sensitive to gel dimension stability, namely, 3D scaffolds for cell culture for disease diagnosis and tissue engineering. We hypothesized that the syneresis origin results from the kappa-carrageenan (kC) polysaccharide thermodynamic instability, and we demonstrated this by measuring the critical (coil-to-coil contact) concentration as a function of temperature. The impact of 5 mM, 10 mM and 15 mM KCl salt on the critical concentration of the solution and the lower critical concentration temperature (LCCT) were particularly investigated. For the kC polysaccharide, the gelation temperature (Tg) falls at temperatures below the LCCT, which explains the shrinking or syneresis reaction of the polysaccharide gels. The gap between Tg and LCCT would be the thermomotive force of the syneresis of many colloidal gels.

6.
Article in English | MEDLINE | ID: mdl-28722538

ABSTRACT

Fe3O4 magnetic nanoparticles, with a negative charge surface, are known to have efficient adsorbent properties, but they tend to be agglomerated into larger aggregates or flocs, which can cause loss of specific area. The addition of cotton fibre, as a stabiliser in preparation of the Fe3O4 nanoparticles, is able to efficiently reduce particle aggregation, and thus, effective particle size, resulting in much greater specific surface area and adsorption sites. Fe3O4 nanoparticles synthesis was accomplished by in situ high-temperature decomposition of the precursor ferric ion in the presence of cotton fibre and ethylene glycol solvent. The morphology of Fe3O4 nanoparticles was characterised by field emission scanning electron microscopy and X-ray diffraction, which confirmed that the magnetic nanoparticles are highly dispersed. These Fe3O4 nanoparticles were used for clean-up and pre-concentration of Sudan dyes in chilli and hot red sauces, prior to their determination by capillary liquid chromatography diode array detection. A comparative study of analyte pre-concentration was conducted with magnetic nanoparticles prepared with and without cotton fibre showing that both solid phases adsorb the analytes, but higher recoveries were obtained when using cotton fibre which therefore was selected for extraction of Sudan dyes.


Subject(s)
Cotton Fiber , Ferrosoferric Oxide/chemical synthesis , Food Coloring Agents/analysis , Iron/chemistry , Magnetite Nanoparticles/chemistry , Azo Compounds/analysis , Ferrosoferric Oxide/chemistry , Naphthols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...