Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 39(25): 8638-8645, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37320857

ABSTRACT

Acetylene (C2H2) is an important and widely used raw material in various industries (such as petrochemical). Generally, a product yield is proportional to the purity of C2H2; however, C2H2 from a typical industrial gas-production process is commonly contaminated by CO2. So far, the achievement of high-purity C2H2 separated from a CO2/C2H2 mixture is still challenging due to their very close molecular dimensions and boiling temperatures. Taking advantage of their quadrupoles with opposite signs, here, we show that the graphene membrane embedded with crown ether nanopores can achieve an unprecedented separation efficiency of CO2/C2H2. Combining the molecular dynamics simulation and the density functional theory (DFT) approaches, we discovered that the electrostatic gas-pore interaction favorably allows the fast transport of CO2 through crown ether nanopores while completely prohibiting C2H2 transport, which yields a remarkable permeation selectivity. In particular, the utilized crown ether pore is capable of allowing the individual transport of CO2 while completely rejecting the passage of C2H2, independent of the applied pressures, fed gases ratios, and exerted temperatures, featuring the superiority and robustness of the crown pore in CO2/C2H2 separation. Further, DFT and PMF calculations demonstrate that the transport of CO2 through the crown pore is energetically more favorable than the transport of C2H2. Our findings reveal the potential application of graphene crown pore for CO2 separation with outstanding performance.

2.
Nature ; 607(7919): 459-462, 2022 07.
Article in English | MEDLINE | ID: mdl-35859197

ABSTRACT

Blue compact dwarf (BCD) galaxies are low-luminosity (absolute K-band magnitude, MK > -21 mag)1, metal-poor (1/50 ≤ Z/Z⊙ ≤ 1/2, where Z is the metallicity in terms of the solar metallicity Z⊙)2, centrally concentrated3 galaxies with bright clumps of star formation4. Cosmological surface-brightness dimming5 and the small size of BCDs limit their detection at high redshifts, making their formation process difficult to observe. Observations of BCDs are needed at intermediate redshifts, where they are still young enough to show their formative stages, particularly in the outer regions where cosmic gas accretion should drive evolution. Here we report the observation of excess far-ultraviolet (FUV) emission in the outer regions of 11 BCDs in the GOODS South field at redshifts between 0.1 and 0.24, corresponding to look-back times of 1.3-2.8 billion years in standard cosmology. These observations were made by the Ultra-Violet Imaging Telescope6 on AstroSat7. For ten BCDs, the radial profiles of the intrinsic FUV emission, corrected for the instrument point spread function, have larger scale lengths than their optical counterparts observed with the Hubble Space Telescope. Such shallow FUV profiles suggest extended star formation in cosmically accreting disks. Clumpy structure in the FUV also suggests that the outer FUV disks are gravitationally unstable. Dynamical friction on the clumps drives them inwards at an average rate exceeding 106 solar masses per billion years.

3.
ACS Nano ; 16(4): 6274-6281, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35324145

ABSTRACT

With growing concerns about global warming, it has become urgent and critical to capture carbon from various emission sources (such as power plants) and even directly from air. Recent advances in materials research permit the design of various efficient approaches for capturing CO2 with high selectivity over other gases. Here, we show that crown nanopores (resembling crown ethers) embedded in graphene can efficaciously allow CO2 to pass and block other flue gas components (such as N2 and O2). We carried out extensive density functional theory-based calculations as well as classical and ab initio molecular dynamics simulations to reveal the energetics and dynamics of gas transport through crown nanopores. Our results highlight that the designed crown nanopores in graphene possess not only an excellent selectivity for CO2 separation/capture but also fast transport (flow) rates, which are ideal for the treatment of flue gas in power plants.

4.
Nature ; 525(7568): 218-21, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26354481

ABSTRACT

Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact.

5.
Nature ; 514(7522): 310-1, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25318519
6.
Nature ; 495(7442): 487-9, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23538829

ABSTRACT

Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

7.
Adv Mater ; 24(27): 3672-7, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22689473

ABSTRACT

Field effect transistors are reaching the limits imposed by the scaling of materials and the electrostatic gating physics underlying the device. In this Communication, a new type of switch based on different physics, which combines known piezoelectric and piezoresistive materials, is described and is shown by theory and simulation to achieve gigahertz digital switching at low voltage (0.1 V).


Subject(s)
Nanotechnology , Transistors, Electronic , Metals/chemistry , Oxides/chemistry , Static Electricity
8.
Proc Natl Acad Sci U S A ; 106(27): 10907-11, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19549858

ABSTRACT

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

9.
Science ; 316(5828): 1132-3, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17525323
SELECTION OF CITATIONS
SEARCH DETAIL