Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 645: 123406, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703960

ABSTRACT

The purpose of this research was to design innovative nanovesicles for ototopical conveyance of triamcinolone acetonide (TA) for otitis media (OM) treatment via incorporating glycerol into nanospanlastics to be termed "Glycerospanlastics". The glycerospanlastics were formulated employing ethanol injection procedure, and central composite design (CCD) was harnessed for optimization of the vesicles. Various attributes of the nanovesicles, viz. particle size distribution, surface charge, TA entrapment efficiency, morphology as well as ex-vivo permeation across the tympanic membrane (TM) were characterized. In vivo implementation of the optimized glycerospanlastics loaded with TA was appraised in OM-induced rats via histopathological and biochemical measurements of the tumor necrosis factor-α (TNF-α) and Interleukin-1ß (IL-1ß) levels in ear homogenates. The safety and tolerability of optimized TA glycerospanlastics was also investigated in non-OM induced animals. The results demonstrated that the optimized TA-glycerospanlastics were in a nanometer range (around 200 nm) with negative charges, high TA entrapment (>85%), good storage properties and better TM permeation relative to TA suspension. More importantly, TA-glycerospanlastics performed better than marketed drug suspension in OM treatment as manifested by restoration of histopathological alterations in TM and lowered values of IL-1ß and TNF-α. Glycerospanlastics could be promising safe ototopical nanoplatforms for OM treatment and other middle ear disorders.


Subject(s)
Otitis Media , Tumor Necrosis Factor-alpha , Rats , Animals , Otitis Media/drug therapy , Drug Delivery Systems , Tympanic Membrane , Triamcinolone Acetonide
2.
Pharmacol Rep ; 75(5): 1045-1065, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37587394

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.

3.
Int J Pharm ; 639: 122940, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37040824

ABSTRACT

Natural medicines are promising platforms for competent topical treatment modalities benefiting the cosmetic implementation and proffering solutions to the current remedies. Therefore, the objective of this study was to formulate syringic acid (SA), well-known for its multilateral anti-inflammatory, antimicrobial and antioxidant potentials, in newly developed linoleic acid (LA) transferosomes as an anti-acne nano-form remedy. Herein, LA was incorporated in transferosomes owing to its antimicrobial effect and dermal penetrability. Comprehensive appraisal through physicochemical, antioxidant and dermal deposition investigations was conducted. Clinical assessment was also performed in acne patients and compared with the marketed product (Adapalene® gel). The relevant investigations of the optimum formula indicated stable vesicles with a small-sized diameter (147.46 nm), surface charge (-26.86 mV), spherical architecture, reasonable entrapment (76.63%), considerable antioxidant activity (IC50 = 11.1 µg/mL) and remarkable skin deposition (78.72%).More importantly, LA based transferosomes enclosing SA exhibited inflammation lessening in acne sufferers as manifested by greater reduction in the total count of the acne lesions reaching 79.5% in contrast to Adapalene® gel with only 18.7% reduction in acne lesions. Interestingly, no irritation and erythema were reported for the proposed transferosomes. Inclusively, the cosmetic formulation practice could reap benefits of the development of such vesicles.


Subject(s)
Acne Vulgaris , Liposomes , Humans , Liposomes/therapeutic use , Linoleic Acid/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Clinical Relevance , Acne Vulgaris/drug therapy , Acne Vulgaris/pathology , Adapalene , Gels
4.
Int J Pharm ; 631: 122482, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36513255

ABSTRACT

Gamma oryzanol (ORZ) is a nutraceutical that is poorly water soluble with poor intestinal absorption. In the current work, ORZ was nanoformulated into uncoated and chitosan coated micelles based on methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) and poly(ε-caprolactone)-b-methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (PCL-PEG-PCL) copolymers for augmenting ORZ oral delivery. The physicochemical properties, morphological study, in-vitro release and safety of the nanoplaforms were determined. Importantly, the nephroprotective competence of the nanoplaforms was analyzed against acute kidney injury (AKI) rat model and the sirtuin-1 associated machineries were assessed. The results revealed that the micelles exerted particle size (PS) from 97.9 to 117.8 nm that was markedly increased after chitosan coating. The reversal of zeta potential from negative to highly positive further confirmed efficient coating. In vitro release profiles demonstrated prolonged release pattern. The nanoforms conferred higher cell viability values than free ORZ on Vero cell line. The designed micelles displayed augmented nephroprotection compared to free ORZ with the supremacy of CS coated micelles over uncoated ones in restoring kidney parameters to normal levels. The attenuated AKI was fulfilled via the modulation of sirtuin-1 signaling pathways translated by restoring the histological features, increasing renal antioxidant states, renal autophagy and decreasing renal inflammation and renal apoptosis. These outcomes confirmed that surface modification with chitosan had a considerable leverage on micelles safety, release behavior and in vivo performance.


Subject(s)
Acute Kidney Injury , Chitosan , Sirtuins , Rats , Animals , Micelles , Chitosan/chemistry , Polyethylene Glycols/chemistry , Polyesters/chemistry , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control
5.
Int J Pharm ; 628: 122276, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36270555

ABSTRACT

Ear-oriented therapeutics vehiculation strategies are requisites for effective treatment of various otic ailments including otitis media (OM). Conquering minimal permeability of the intrinsic barrier of middle ear; intact tympanic membrane (TM) is still a defiance. In this study, the fabrication of glycerosomes was explored to boost triamcinolone acetonide (TA) delivery to the middle ear via the otic application to improve treatment of OM. Opting a d-optimal design, TA glycerosomes were formulated and optimized using ethanol injection method. The optimized formula was assessed for morphology, viscosity, ex vivo TM permeation and deposition and physical stability. Moreover, OM induction in rats using lipopolysaccharides was conducted, histological and biochemical investigations were performed to assess the therapeutic potential of TA glycerosomes and their tolerability as well. The optimized formula displayed a nanosized value (106.1 ± 2.82), low polydispersity index (0.079 ± 0.04), satisfactory drug entrapment efficiency (80.62 ± 4.41 %), shear thinning behavior and excellent physical stability. Ex-vivo TM permeation and deposition monitoring for 24 h demonstrated greater flux and deposition compared to free drug. More importantly, the in vivo studies demonstrated the supremacy of glycerosomes with respect to tolerability and efficacy in alleviating OM following ototopical application compared to marketed drug. Such therapeutic modality represents a promising option to boost the efficacy of otic drugs, awaiting clinical translation.


Subject(s)
Otitis Media , Triamcinolone Acetonide , Rats , Animals , Otitis Media/drug therapy , Ear, Middle , Tympanic Membrane , Permeability
6.
Int J Biol Macromol ; 217: 731-747, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35841964

ABSTRACT

Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.


Subject(s)
Hyaluronic Acid , Nanoparticles , Guanine/analogs & derivatives , Hyaluronic Acid/metabolism , Lipids , Macrophages/metabolism , Polymers/metabolism , Vitamin E/pharmacology
7.
Drug Deliv ; 29(1): 1345-1357, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35506466

ABSTRACT

Topical conveyance of antifungal agents like itraconazole ITZ has been giving good grounds for expecting felicitous antifungal medicines. The defiance of topical delivery of this poorly water soluble and high-molecular-weight drug, however, mightily entail an adequate vehiculation. ITZ aspasomes, newer antioxidant generation of liposomes, have been designed and enclosed in a cream to ameliorate skin deposition. The proposed creams containing non-formulated ITZ or encapsulated in aspasomes (0.1% or 0.5%) were topically applied in patients with diagnosed diaper dermatitis complicated by candidiasis, tinea corporis (TC), and tinea versicolor (TVC). Placebos (void aspasomal cream and cream base) were also utilized. The obtained results for diaper rash revealed that aspasomal cream (0.5% ITZ) was eminent with respect to complete cure and negative candida culture after 10-day therapy relative to counterparts containing 0.1% ITZ aspasomes or non-formulated ITZ (0.1% and 0.5%). For tinea, the same trend was manifested in terms of 'cleared' clinical response in 90% of patients and absence of fungal elements after 4-week treatment. Relative to non-formulated ITZ, ITZ aspasomal cream was endorsed to be auspicious especially when ITZ concentration was lowered to half commercially available cream concentration (1%), pushing further exploitation in other dermal fungal infections.


Subject(s)
Itraconazole , Tinea , Antifungal Agents , Humans , Liposomes , Skin , Tinea/drug therapy
8.
Nanomedicine ; 43: 102561, 2022 07.
Article in English | MEDLINE | ID: mdl-35417773

ABSTRACT

Fighting malignant neoplasms via repurposing existing drugs could be a welcome move for prosperous cancer remediations. In the current work, nanovehiculation and optimization of the repositioned itraconazole (ITZ) utilizing ascorbyl palmitate (AP) aspasomes would be an auspicious approach. Further, the optimized aspasomes were incorporated in a cream and tracked for skin deposition. The in vivo efficacy of aspasomal cream on mice subcutaneous Ehrlich carcinoma model was also assessed. The optimized aspasomes revealed nano size (67.83 ± 6.16 nm), negative charge (-79.40 ± 2.23 mV), > 95% ITZ entrapment and high colloidal stability. AP yielded substantial antioxidant capacity and pushed the ITZ cytotoxicity forward against A431 cells (IC50 = 5.3±0.27 µg/mL). An appealing privilege was the aspasomal cream that corroborated spreadability, contemplated skin permeation and potentiated in vivo anticancer competence, reflected in 62.68% reduction in the tumor weight. Such synergistic tumor probes set the foundation for futuristic clinical translation and commercialization.


Subject(s)
Itraconazole , Skin Neoplasms , Animals , Ascorbic Acid/analogs & derivatives , Itraconazole/pharmacology , Mice , Skin Absorption , Skin Neoplasms/drug therapy
9.
Int J Pharm ; 616: 121508, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35123002

ABSTRACT

In recent years, researchers are exploring innovative green materials fabricated from renewable natural substances to meet formulation needs. Among them, biopolymers like chitosans and biosurfactants such as sugar fatty acid esters are of potential interest due to their biocompatibility, biodegradability, functionality, and cost-effectiveness. Both classes of biocompounds possess the ability to be efficiently employed in wound dressing to help physiological wound healing, which is a bioprocess involving uncontrolled oxidative damage and inflammation, with an associated high risk of infection. In this work, we synthesized two different sugar esters (i.e., lactose linoleate and lactose linolenate) that, in combination with chitosan and sucrose laurate, were evaluated in vitro for their cytocompatibility, anti-inflammatory, antioxidant, and antibacterial activities and in vivo as wound care agents. Emphasis on Wnt/ß-catenin associated machineries was also set. The newly designed lactose esters, sucrose ester, and chitosan possessed sole biological attributes, entailing considerable blending for convenient formulation of wound care products. In particular, the mixture composed of sucrose laurate (200 µM), lactose linoleate (100 µM), and chitosan (1%) assured its superiority in terms of efficient wound healing prospects in vivo together with the restoring of the Wnt/ß-catenin signaling pathway, compared with the marketed wound healing product (Healosol®), and single components as well. This innovative combination of biomaterials applied as wound dressing could effectively break new ground in skin wound care.


Subject(s)
Chitosan , Anti-Bacterial Agents , Bandages , Esters , Sugars , Wound Healing
10.
ACS Omega ; 6(10): 6848-6860, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748599

ABSTRACT

Global trials are grappling toward identifying prosperous remediation against the ever-emerging and re-emerging pathogenic respiratory viruses. Battling coronavirus, as a model respiratory virus, via repurposing existing therapeutic agents could be a welcome move. Motivated by its well-demonstrated curative use in herpes simplex and influenza viruses, utilization of the nanoscale zinc oxide (ZnO) would be an auspicious approach. In this direction, ZnO nanoparticles (NPs) were fabricated herein and relevant aspects related to the formulation such as optimization, structure, purity, and morphology were elucidated. In silico molecular docking was conducted to speculate the possible interaction between ZnO NPs and COVID-19 targets including the ACE2 receptor, COVID-19 RNA-dependent RNA polymerase, and main protease. The cellular internalization of ZnO NPs using human lung fibroblast cells was also assessed. Optimized hexagonal and spherical ZnO nanostructures of a crystallite size of 11.50 ± 0.71 nm and positive charge were attained. The pure and characteristic hexagonal wurtzite P63mc crystal structure was also observed. Interestingly, felicitous binding of ZnO NPs with the three tested COVID-19 targets, via hydrogen bond formation, was detected. Furthermore, an enhanced dose-dependent cellular uptake was demonstrated. The obtained results infer a rationale, awaiting validation from further biological and therapeutic studies.

11.
Colloids Surf B Biointerfaces ; 199: 111534, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33373841

ABSTRACT

The present study is concerned with the suitability of using Myrj 59, out-performing the commonly used stabilizer i.e., poloxamer, for preparation of cubosomes on one hand and gives an insight into the need for distinctive choice of delivery system and administration route towards better diabetes pharmacotherapy on the other hand. In light, repaglinide (REP) cubosomal dispersion and in-situ gel forms were prepared and physicochemically characterized. The selected cubosomal forms were tested for in-vitro drug release and administered via intranasal (IN) and intraperitoneal (IP) routes and compared with Intravenous (IV) REP solution regarding in-vivo antidiabetic efficacy. The results confirmed the formation of cubic nanostructures (170-233 nm), entrapping high REP amounts (93.2-95.66 %). Sustained REP release from selected cubosomal forms was realized with no burst release. Upon in-vivo assessment, IN and IP REP cubosomes and cubosomal gel exhibited superior long-acting in-vivo traits over IV REP solution, respecting percentages of maximum reduction, total decrease in BG levels, and the pharmacological availability. Moreover, IP REP cubosomes and cubosomal gel revealed higher values of the aforementioned parameters than IN counterparts. In conclusion, IN and IP administration of the newly developed cubosomal forms could proffer feasible options for an optimal control of BG levels.


Subject(s)
Diabetes Mellitus , Administration, Intranasal , Drug Liberation , Gels , Humans , Particle Size
12.
Pharmaceutics ; 12(2)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050489

ABSTRACT

Flavonoids possess different interesting biological properties, including antibacterial, antiviral, anti-inflammatory and antioxidant activities. However, unfortunately, these molecules present different bottlenecks, such as low aqueous solubility, photo and oxidative degradability, high first-pass effect, poor intestinal absorption and, hence, low systemic bioavailability. A variety of delivery systems have been developed to circumvent these drawbacks, and among them, in this work niosomes have been selected to encapsulate the hepatoprotective natural flavonoid quercetin. The aim of this study was to prepare nanosized quercetin-loaded niosomes, formulated with different monolaurate sugar esters (i.e., sorbitan C12; glucose C12; trehalose C12; sucrose C12) that act as non-ionic surfactants and with cholesterol as stabilizer (1:1 and 2:1 ratio). Niosomes were characterized under the physicochemical, thermal and morphological points of view. Moreover, after the analyses of the in vitro biocompatibility and the drug-release profile, the hepatoprotective activity of the selected niosomes was evaluated in vivo, using the carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Furthermore, the levels of glutathione and glutathione peroxidase (GSH and GPX) were measured. Based on results, the best formulation selected was glucose laurate/cholesterol at molar ratio of 1:1, presenting spherical shape and a particle size (PS) of 161 ± 4.6 nm, with a drug encapsulation efficiency (EE%) as high as 83.6 ± 3.7% and sustained quercetin release. These niosomes showed higher hepatoprotective effect compared to free quercetin in vivo, measuring serum biomarker enzymes (i.e., alanine and aspartate transaminases (ALT and AST)) and serum biochemical parameters (i.e., alkaline phosphatase (ALP) and total proteins), while following the histopathological investigation. This study confirms the ability of quercetin loaded niosomes to reverse CCl4 intoxication and to carry out an antioxidant effect.

13.
PLoS One ; 15(1): e0227231, 2020.
Article in English | MEDLINE | ID: mdl-31923260

ABSTRACT

A platform capable of specifically delivering an antiviral drug to the liver infected with hepatitis B is a major concern in hepatology. Vaccination has had a major effect on decreasing the emerging numbers of new cases of infection. However, the total elimination of the hepatitis B virus from the body requires prolonged therapy. In this work, we aimed to target the liver macrophages with lipid polymer hybrid nanoparticles (LPH), combining the merit of polymeric nanoparticles and lipid vesicles. The hydrophilic antiviral drug, entecavir (E), loaded LPH nanoparticles were optimized and physicochemically characterized. A modulated lipidic corona, as well as, an additional coat with vitamin E were used to extend the drug release enhance the macrophage uptake. The selected vitamin E coated LPH nanoparticles enriched with lecithin-glyceryl monostearate lipid shell exhibited high entrapment for E (80.47%), a size ≤ 200 nm for liver passive targeting, extended release over one week, proven serum stability, retained stability after refrigeration storage for 6 months. Upon macrophage uptake in vitro assessment, the presented formulation displayed promising traits, enhancing the cellular retention in J774 macrophages cells. In vivo and antiviral activity futuristic studies would help in the potential application of the ELPH in hepatitis B control.


Subject(s)
Antiviral Agents/pharmacology , Drug Delivery Systems/methods , Guanine/analogs & derivatives , Hepatitis B/metabolism , Lipids/chemistry , Macrophages/drug effects , Nanoparticles/chemistry , Polymers/chemistry , Vitamin E/chemistry , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Drug Liberation , Drug Stability , Drug Storage , Erythrocytes/drug effects , Guanine/administration & dosage , Guanine/pharmacology , Guanine/therapeutic use , Hepatitis B/drug therapy , Male , Mice , Rats
14.
Pharm Dev Technol ; 24(10): 1258-1271, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31437077

ABSTRACT

The aim of the current investigation is to delineate the buccal applicability of an in situ composite gel containing aceclofenac (AC) amino methacrylate copolymer microparticles (MPs), surmounting limitations of oral existing conventional therapy. AC Eudragit RL100 MPs were fabricated and statistically optimized using 2241 factorial design. Better buccal applicability and enhanced localization were achieved by combining the optimum MPs with in situ ion-activated gellan gum gel. The crosslinking and gelation of in situ gel were investigated by morphological and solid state characterizations. Suitability for buccal delivery and in vivo therapeutic efficacy in inflammation model of rats were also assessed. Results showed that the best performing formula displayed particle size (PS) of 51.00 µm and high entrapment efficiency (EE%) of 94.73%. MPs were successfully entrapped inside the gel network of the composite system. Gelation tendency, pH, shear-thinning properties and mucoadhesivity of the prepared in situ composite gel guaranteed its buccal suitability. Sustained AC release features and promising in vitro anti-arthritic response were also demonstrated. Moreover, consistent and prolonged in vivo anti-inflammatory effect was achieved, relative to standard AC. Taken together; this study proves the potential of in situ composite gel as an appropriate therapeutic proposal for AC buccal delivery.


Subject(s)
Acrylic Resins/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Diclofenac/analogs & derivatives , Drug Carriers/chemistry , Methacrylates/chemistry , Polysaccharides, Bacterial/chemistry , Administration, Buccal , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Diclofenac/administration & dosage , Diclofenac/chemistry , Diclofenac/therapeutic use , Drug Compounding , Drug Liberation , Edema/drug therapy , Male , Particle Size , Rats, Sprague-Dawley , Viscosity
15.
Int J Pharm ; 568: 118556, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31348982

ABSTRACT

Tazarotene (TAZ) is a topical synthetic retinoid used in psoriasis treatment, however, it is extremely lipophilic and exhibits skin irritation. Research is in a state of continuous advancement in the field of nanocarriers fabrication, and in this regard, we investigated the formulation of novel topically oriented nanovesicles; representing a combination of spanlastics and penetration enhancer vesicles, to be termed (fluidized-SNs). TAZ-loaded fluidized SNs were physicochemically characterized, tested for ex vivo cutaneous retention, and the selected formulation was compared with the marketed product Acnitaz® regarding clinical antipsoriatic activity. The selected fluidized-SNs enriched with 1% cineole exhibited high entrapment for TAZ (76.19%), suitable size and zeta potential of 241.5 ±â€¯5.68 nm and -36.10 ±â€¯2.50 mV respectively, and retaining of stability after refrigeration storage for one month. As hypothesized, cineole enriched fluidized-SNs exhibited remarkable TAZ deposition amounting to a total of 81.51% in the different skin layers. Upon clinical assessment, the presented formulation displayed superior traits compared to the marketed product, in terms of dermoscopic imaging, morphometric analysis of psoriatic lesions, and statistical analysis of PASI scores. Results confirmed that the prepared novel fluidized spanlastics formulation holds great promise for the treatment of psoriasis, and its benefit should futuristically be investigated in other topical diseases.


Subject(s)
Dermatologic Agents/administration & dosage , Eucalyptol/administration & dosage , Nanostructures/administration & dosage , Nicotinic Acids/administration & dosage , Psoriasis/drug therapy , Administration, Cutaneous , Adult , Animals , Female , Hexoses/administration & dosage , Humans , Male , Middle Aged , Polysorbates/administration & dosage , Psoriasis/pathology , Rats , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin Absorption , Treatment Outcome , Young Adult
16.
Int J Biol Macromol ; 136: 220-229, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31195046

ABSTRACT

This study aims to obtain an inhalation powder with meaningful aerodynamic and safety profiles for the lung delivery of losartan (LS). For this, the capacity of self-assembly of chitosan (CS) and dextran sulfate (DS) to form CS/DS microplex (MC), incorporating high payload of hydrophilic LS was harnessed. Dry powder inhaler (LS-MC-DPI), prepared via spray drying of the best achieved LS-MC, was proposed to impart precise engineered inhalation characteristics. Micrometric robust CS/DS MC was revealed to offer the opportunity to heighten LS encapsulation, accounting for ~75%. LS-MC-DPI was successfully developed with high yield, flowability, respirable aerodynamic size and morphology which formed swellable and mucoadhesive network, facilitating intra-pulmonary delivery. Moreover, sustained release pattern, augmented deep lung deposition and safe histological profile were realized. Overall, the newly developed LS-MC DPI shows promises as an inhalation system. The aerodynamic performance and safety of LS-MC-DPI verify its suitability for further in vivo lung therapeutics.


Subject(s)
Chitosan/chemistry , Dextran Sulfate/chemistry , Drug Carriers/adverse effects , Drug Carriers/chemistry , Losartan/chemistry , Lung/drug effects , Safety , Adhesiveness , Administration, Inhalation , Air , Animals , Drug Carriers/administration & dosage , Drug Liberation , Kinetics , Male , Mucous Membrane/chemistry , Powders , Rats
17.
Int J Pharm ; 566: 573-584, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31176850

ABSTRACT

Methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) polymeric micelles (PMs) open a promising avenue through which ocular drug delivery with superior efficacy and tolerability can be potentially obtained. Methazolamide (MTZ) is an anti-glaucoma drug exhibiting poor corneal penetration, making it an ideal candidate for new polymeric micellar systems. MTZ-PMs were prepared using the thin film hydration procedure and optimized using a Design of Experiment (DoE) approach. In vitro drug release, thermal analyses and FT-IR characterization were also evaluated. MTT assay and histopathological assessment were carried out to verify ocular tolerability as well as Draize irritancy test. In vivo studies were conducted on rabbits to evaluate anti-glaucoma activity in a glucocorticoid-induced glaucoma model. The results showed successful entrapment of MTZ inside PMs matrix as reflected by the complete vanishing of drug melting peak in DSC thermogram and the possible formation of hydrogen bonding between MTZ and mPEG-PCL copolymer in FT-IR spectrum. The selected formula exhibited a particle size of 60 nm, entrapment efficiency of 93% and discrete spherical particles. Moreover, sustained release of MTZ, cellular and tissue biocompatibility and marked anti-glaucoma efficacy, as compared to MTZ solution, were realized. The combined results show that PMs could potentiate the therapeutic outcome of nanotechnology ocular drug delivery.


Subject(s)
Carbonic Anhydrase Inhibitors/administration & dosage , Glaucoma/drug therapy , Methazolamide/administration & dosage , Micelles , Polyesters/administration & dosage , Polyethylene Glycols/administration & dosage , Animals , Carbonic Anhydrase Inhibitors/chemistry , Cell Line , Cell Survival/drug effects , Drug Liberation , Epithelium, Corneal/cytology , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Intraocular Pressure/drug effects , Male , Methazolamide/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Rabbits , Rats
18.
Expert Rev Med Devices ; 16(6): 467-482, 2019 06.
Article in English | MEDLINE | ID: mdl-31058550

ABSTRACT

INTRODUCTION: The applications of naturally obtained polymers are tremendously increased due to them being biocompatible, biodegradable, environmentally friendly and renewable in nature. Among them, polyhydroxyalkanoates are widely studied and they can be utilized in many areas of human life research such as drug delivery, tissue engineering, and other medical applications. AREAS COVERED: This review provides an overview of the polyhydroxyalkanoates biosynthesis and their possible applications in drug delivery in the range of micro- and nano-size. Moreover, the possible applications in tissue engineering are covered considering macro- and microporous scaffolds and extracellular matrix analogs. EXPERT COMMENTARY: The majority of synthetic plastics are non-biodegradable so, in the last years, a renewed interest is growing to develop alternative processes to produce biologically derived polymers. Among them, PHAs present good properties such as high immunotolerance, low toxicity, biodegradability, so, they are promisingly using as biomaterials in biomedical applications.


Subject(s)
Drug Delivery Systems , Polyhydroxyalkanoates/chemistry , Tissue Engineering , Bacteria/metabolism , Humans , Nanotechnology , Polyhydroxyalkanoates/biosynthesis , Tissue Scaffolds/chemistry
19.
Int J Pharm ; 543(1-2): 224-233, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29604369

ABSTRACT

The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems.


Subject(s)
Bone Density Conservation Agents/administration & dosage , Drug Delivery Systems , Nasal Mucosa/metabolism , Osteoporosis/drug therapy , Polyethylene Glycols/administration & dosage , Risedronic Acid/administration & dosage , Administration, Intranasal , Animals , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/therapeutic use , Bone and Bones/drug effects , Bone and Bones/pathology , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/therapeutic use , Dexamethasone , Drug Liberation , Ethers , Female , Gels , Osteoporosis/chemically induced , Osteoporosis/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/therapeutic use , Rats , Risedronic Acid/chemistry , Risedronic Acid/therapeutic use , Sheep , Temperature
20.
Curr Pharm Des ; 23(3): 373-392, 2017.
Article in English | MEDLINE | ID: mdl-27799039

ABSTRACT

BACKGROUND: Due to its unique features, the respiratory tract had received great attention as a promising non-invasive route for drug administration to achieve both local and systemic effects. Efforts spent to tailor systems able to overcome the lung defence mechanisms and biological barriers are followed in this review. Aerodynamic diameter, morphology, lung deposition and drug release profiles are the main criteria describing the selected new smart lung targeted delivery systems. METHODS: Novel systems such as nanoparticles, nano-embedded-in microparticles (NEM), small microparticles (MP), large porous particles (LPP), PulmospheresTM and polymeric micelles are used to passively target different areas in the respiratory tract. The most common preparation methods are outlined in the article. Special emphasis was given to the characteristics of the polymers used to fabricate the developed systems. Efforts made to prepare systems using chitosan (CS), alginate (alg), hyaluronic acid (HA), gelatin and albumin as examples of natural polymers and poly lactic-co-glycolic acid (PLGA) and poly(Ɛ-caprolactone) (PCL) as synthetic polymers were compiled. CONCLUSION: The continuous development and work in the area of lung targeting resulted in the development of engineered smart platforms with the capability to carry small drug molecules, proteins and genes to treat a variety of local and systemic diseases.


Subject(s)
Drug Delivery Systems , Lung/drug effects , Polymers/chemistry , Animals , Drug Carriers/chemistry , Humans , Nanoparticles/chemistry , Polymers/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...